Pleurotus eryngii (DC.) Gillet (MCC58) was investigated for its ligninolytic ability to produce laccase (Lac), manganese peroxidase (MnP), aryl alcohol oxidase (AAO), and lignin peroxidase (LiP) enzymes through solid-state fermentation using apricot and pomegranate agroindustrial wastes. The reducing sugar, protein, lignin, and cellulose levels in these were studied. Also, the production of these ligninolytic enzymes was researched over the growth of the microorganism throughout 20 days, and the reducing sugar, protein, and nitrogen levels were recorded during the stationary cultivation at 28 ± 0.5°C. The highest Lac activity was obtained as 1618.5 ± 25 U/L on day 12 of cultivation using apricot. The highest MnP activity was attained as 570.82 ± 15 U/L on day 17 in pomegranate culture and about the same as apricot culture. There were low LiP activities in both cultures. The maximum LiP value detected was 16.13 ± 0.8 U/L in apricot cultures. In addition, AAO activities in both cultures showed similar trends up to day 17 of cultivation, with the highest AAO activity determined as 105.99 ± 6.3 U/L on day 10 in apricot cultures. Decolorization of the azo dye methyl orange was also achieved with produced ligninolytic enzymes by P. eryngii using apricot and pomegranate wastes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10826068.2013.867870 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
Lignin degradation by biocatalysts is a key strategy to develop a plant-based sustainable carbon economy and thus alleviate global climate change. This process involves synergy between ligninases and auxiliary enzymes. However, auxiliary enzymes within secretomes, which are composed of thousands of enzymes, remain enigmatic, although several ligninolytic enzymes have been well characterized.
View Article and Find Full Text PDFMetabolites
January 2025
Department of Microbiology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland.
Background/objectives: Mycotoxins, secondary metabolites synthesized by filamentous fungi, have been classified as dangerous substances and proven to be carcinogenic, as well as to have genotoxic, nephrotoxic, hepatotoxic, teratogenic, and mutagenic properties. Despite numerous trials to develop an effective and safe-for-human-health method of detoxification, there is still a high risk associated with the occurrence of these toxins in food and feed. Biological methods of food preservation are an alternative option to conventional chemical and physical methods, characterized by their less negative impact on human health as well as their high efficiency against filamentous fungi and other foodborne pathogens.
View Article and Find Full Text PDFFront Microbiol
January 2025
School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom.
The microbiota within the guts of insects plays beneficial roles for their hosts, such as facilitating digestion and extracting energy from their diet. The African palm weevil (APW) lives within and feeds on the high lignin-containing trunk of palm trees; therefore, their guts could harbour a large community of lignin-degrading microbes. In this study, we aimed to explore the bacterial community within the gut of the APW larvae, specifically with respect to the potential for lignin degradation in various gut segments as a first step to determining the viability of mining bacterial lignin-degrading enzymes for the bioconversion of lignocellulosic biomass to biofuels and biomaterials.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering, Toronto Metropolitan University 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada. Electronic address:
The presence of endocrine disrupting chemicals (EDCs) in water can impart detrimental effects on public health by mimicking the behaviors of natural hormones and their associated receptors in human body. Studies have demonstrated that ligninolytic enzymes such as laccase can degrade various phenolic compounds, including a broad range of EDCs. In this study, the technique of covalent immobilization of laccase through carbodiimide coupling chemistry on highly adsorptive reduced graphene oxide (rGO) sponges was utilized to effectively remove two representative EDCs; namely, bisphenol A (BPA) and triclosan (TCS) from water.
View Article and Find Full Text PDF<b>Background and Objective:</b> Laccase as a ligninolytic enzyme has been known for its green-catalysis mechanism, which has the potential to be applied to food industries. Lignocellulose found in agro-industrial waste is promising for laccase production as a substrate, that could be encountered in pineapple (<i>Ananas comosus</i>) and Arabica coffee (<i>Coffea arabica</i>) industrial residue. To boost enzyme activity, laccase characterization was performed using <i>Ganoderma lucidum</i> under solid-state fermentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!