Background And Aim: Reperfusion injury is a complex inflammatory response involving numerous mechanisms and pathways. Mechanical tissue resuscitation is a newly described therapeutic strategy that reduces reperfusion injury. This study further investigates potential mechanisms for the protective effects of mechanical tissue resuscitation while utilizing a bio-absorbable matrix.
Methods: Anesthetized swine were subjected to 80 minutes of coronary ischemia and three hours of reperfusion. An absorbable matrix was used to cover the ischemic-reperfused myocardium and apply the mechanical tissue resuscitation (-50 mmHg) throughout reperfusion. Infarct size, myocardial blood flow (microspheres), apoptosis, edema, and hemodynamics were analyzed.
Results: Both control and treated groups displayed similar hemodynamics and physiologic parameters. Mechanical tissue resuscitation significantly reduced early infarct size (16.6 ± 3.8% vs. 27.3 ± 2.5% of area at risk, p < 0.05). This reduction of infarct size was accompanied by reduced edema formation in both epicardial (27% reduction) and endocardial (58% reduction) samples. Histological examination of both epicardial and endocardial tissues also revealed a reduction in apoptosis (80% and 44% reductions) in MTR-treated hearts.
Conclusions: Treatment with mechanical tissue resuscitation during reperfusion reduces both early cell death and the delayed, programmed cell death after ischemia-reperfusion. This cardioprotection is also associated with a significant reduction in interstitial water. Additional cardioprotection may be derived from mechanical tissue resuscitation-induced increased blood flow. Mechanical tissue resuscitation, particularly with a resorbable device, is a straightforward and efficacious mechanical strategy for decreasing cardiomyocyte death following myocardial infarction as an adjunctive therapy to surgical revascularization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jocs.12247 | DOI Listing |
Pharmaceutics
January 2025
University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.
View Article and Find Full Text PDFNutrients
January 2025
Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
Background: It seems that some substances of plant origin may exert health-promoting activities in diabetes and its complications, including those concerning bones. Chrysin (5,7-dihydroxyflavone), present in honey, some plants, and food of plant origin, has been reported to exert, among others, antioxidative, anti-inflammatory and antidiabetic effects. The aim of this study was to investigate the effects of chrysin on the skeletal system of rats with experimental type 1 diabetes (T1D).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute of Graduate Studies, Bioengineering Division, Tokat Gaziosmanpaşa University, 60250 Tokat, Türkiye.
Hernia repair is the most common surgical operation applied worldwide. Mesh prostheses are used to support weakened or damaged tissue to decrease the risk of hernia recurrence. However, the patches currently used in clinic applications have significant short-term and long-term risks.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico.
Our work describes the green synthesis of silver sulfide nanoparticles (AgS NPs) and their formulation into polycaprolactone fibers (PCL), aiming to improve the multifunctional biological performance of PCL membranes as scaffolds. For this purpose, an extract of rosemary () was employed as a reducing agent for the AgS NPs, obtaining irregular NPs and clusters of 5-60 nm, with a characteristic SPR absorption at 369 nm. AgS was successfully incorporated into PCL fibers by electrospinning using heparin (HEP) as a stabilizer/biocompatibility agent, obtaining nanostructured fibers with a ca.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Departamento de Engenharia de Materiais, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil.
The pequi () is a typical fruit from the Brazilian Cerrado. From it, pequi pulp oil is extracted, a valuable product for cosmetic applications due to its high levels of unsaturated fatty acids and carotenoids. Carotenoids are antioxidant compounds that are easily oxidized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!