Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Small-angle X-ray and neutron scattering (SAXS/SANS) by asphaltenes in various solvents (toluene, tetrahydrofuran, and 1-methylnaphthalene) at dilute concentrations of asphaltenes are presented and discussed. As asphaltenes are diluted, it was found that the cluster size decreases and follows a fractal scaling law. This observation reveals that asphaltene clusters persist to dilute concentrations and maintain fractal characteristics, regardless of concentration. For the first time, the fraction of asphaltenes that exist in nanoaggregates compared to those molecularly dispersed was estimated from the scattering intensity. Significant dissociation was detected at concentrations similar to the previously reported critical nanoaggregate concentration (CNAC); however, the dissociation was observed to occur gradually as the asphaltene concentration was lowered. Complete dissociation was not detected, and aggregates persisted down to asphaltene concentrations as low as 15 mg/L (0.00125 vol. %). A simplified thermodynamic aggregation model was applied to the measurements, and the free energy change of association per asphaltene-asphaltene interaction was calculated to be approximately -31 kJ/mol. Finally, novel solvent-corrected WAXS results of asphaltene in a liquid environment are presented and reveal three distinct separation distances, in contrast to the two separation distances observed in diffraction studies of solid phase asphaltenes. Significant differences in the WAXS peak positions and shapes between aromatic and nonaromatic solvents suggests that there may be large differences between the solvation shell or conformation of the asphaltene alkyl shell depending on the surrounding liquid environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la403531w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!