A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computational framework for identification of intact glycopeptides in complex samples. | LitMetric

AI Article Synopsis

  • Developing computational methods to monitor glycoproteomes is difficult due to the complexity of glycan structures and their specific attachment sites.
  • This paper presents a new computational framework for identifying N-linked glycopeptides in complex samples, successfully identifying 103 glycopeptides from human serum using standard proteomic techniques.

Article Abstract

Glycosylation is an important protein modification that involves enzymatic attachment of sugars to amino acid residues. Understanding the structure of these sugars and the effects of glycosylation are vital for developing indicators of disease development and progression. Although computational methods based on mass spectrometric data have proven to be effective in monitoring changes in the glycome, developing such methods for the glycoproteome are challenging, largely due to the inherent complexity in simultaneously studying glycan structures with their corresponding glycosylation sites. This paper introduces a computational framework for identifying intact N-linked glycopeptides, i.e. glycopeptides with N-linked glycans attached to their glycosylation sites, in complex proteome samples. Scoring algorithms are presented for tandem mass spectra of glycopeptides resulting from collision-induced dissociation (CID), higher-energy C-trap dissociation (HCD), and electron transfer dissociation (ETD) fragmentation modes. An empirical false-discovery rate estimation method, based on a target-decoy search approach, is derived for assigning confidence. The power of our method is further enhanced when multiple data sets are pooled together to increase identification confidence. Using this framework, 103 highly confident N-linked glycopeptides from 53 sites across 33 glycoproteins were identified in complex human serum proteome samples using conventional proteomic platforms with standard depletion of the 7-most abundant proteins. These results indicate that our method is ready to be used for characterizing site-specific protein glycosylation in complex samples.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac402338uDOI Listing

Publication Analysis

Top Keywords

computational framework
8
complex samples
8
glycosylation sites
8
n-linked glycopeptides
8
proteome samples
8
glycopeptides
5
glycosylation
5
framework identification
4
identification intact
4
intact glycopeptides
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!