Background: Germ cells in animals are highly specialized to preserve the genome. A distinct set of chromatin structures must be properly established in germ cells to maintain cell fate and genome integrity. We describe DNA-surface interactions in activated Caenorhabditis elegans oocytes that are revealed through the activity of an endogenous nuclease ('endocleavage').

Results: Our analysis began with an unexpected observation that a majority (>50%) of DNA from ovulated but unfertilized C. elegans oocytes can be recovered in fragments of approximately 500 base pairs or shorter, cleaved at regular intervals (10 to 11 nt) along the DNA helix. In some areas of the genome, DNA cleavage patterns in these endoreduplicated oocytes appear consistent from cell-to-cell, indicating coherent rotational positioning of the DNA in chromatin. Particularly striking in this analysis are arrays of sensitive sites with a periodicity of approximately 10 bp that persist for several hundred base pairs of genomic DNA, longer than a single nucleosome core. Genomic regions with a strong bias toward a 10-nt periodic occurrence of A(n)/T(n) (so-called PATC regions) appear to exhibit a high degree of rotational constraint in endocleavage phasing, with a strong tendency for the periodic A(n)/T(n) sites to remain on the face of the helix protected from nuclease digestion.

Conclusion: The present analysis provides evidence for an unusual structure in C. elegans oocytes in which genomic DNA and associated protein structures are coherently linked.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819648PMC
http://dx.doi.org/10.1186/1756-8935-6-37DOI Listing

Publication Analysis

Top Keywords

elegans oocytes
16
caenorhabditis elegans
8
endogenous nuclease
8
germ cells
8
base pairs
8
genomic dna
8
dna
6
oocytes
5
unusual dna
4
dna packaging
4

Similar Publications

ERK activity oscillates between sustained activation during oocyte formation and transient inactivation during oocyte maturation, fertilization, and early embryogenesis. Consequences of ectopic ERK activity upon oocyte maturation and in early embryogenesis are unknown. We show, in Caenorhabditis elegans, that ectopic ERK activity upon oocyte maturation (metaphase I oocytes) results in embryos with abnormalities in nuclear divisions leading to embryonic death.

View Article and Find Full Text PDF

At the end of cell division, the nuclear envelope reassembles around the decondensing chromosomes. Female meiosis culminates in two consecutive cell divisions of the oocyte, meiosis I and II, which are separated by a brief transition phase known as interkinesis. Due to the absence of chromosome decondensation and the suppression of genome replication during interkinesis, it has been widely assumed that the nuclear envelope does not reassemble between meiosis I and II.

View Article and Find Full Text PDF
Article Synopsis
  • Cortical condensates are transient structures that form in the actin cortex of oocytes and are rich in actin and N-WASP, forming through a phase separation process influenced by chemical kinetics.
  • The study reveals that N-WASP can undergo surface condensation on lipid bilayers, which is a key factor in the formation of these condensates.
  • The dynamics of condensate formation are regulated by a balance between their creation at the surface and the polymerization of actin, shedding light on the control of complex intracellular structures.
View Article and Find Full Text PDF

Visualization and Analyses of Cytoplasmic Streaming in C. elegans Zygotes.

Methods Mol Biol

December 2024

Division of Developmental Physiology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan.

Cytoplasmic streaming is the bulk flow of cytoplasm observed, not only in plants but also in animal oocytes and embryos. The flow of viscous fluid within the cytoplasm generates forces that re-arrange intracellular organelles, such as mitotic spindles and nuclei, to regulate cell growth, migration, and polarity. Cytoplasmic streaming is established by motor proteins and the viscoelastic cytoskeleton, including the actin filaments and microtubules.

View Article and Find Full Text PDF

Chemically induced proximity reveals a Piezo-dependent meiotic checkpoint at the oocyte nuclear envelope.

Science

November 2024

California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.

Sexual reproduction relies on robust quality control during meiosis. Assembly of the synaptonemal complex between homologous chromosomes (synapsis) regulates meiotic recombination and is crucial for accurate chromosome segregation in most eukaryotes. Synapsis defects can trigger cell cycle delays and, in some cases, apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!