A computationally designed DNA aptamer template with specific binding to phosphatidylserine.

Nucleic Acid Ther

1 Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada .

Published: December 2013

The phospholipid phosphatidylserine (PS) is an early marker exploited for detecting apoptosis (PS externalization in the cell membrane bilayer) and one factor that is associated with increased amyloid plaque deposition in transmissible spongiform encephalopathies (TSEs). PS can therefore be considered as a promising target for diagnosis or treatment of diseases. Aptamers (short nucleic acid sequences) are a particularly attractive class of materials among those currently considered for targeting PS. Here we applied an entropy based seed-and-grow strategy to design a DNA aptamer template to bind specifically to PS. The binding properties of designed aptamers were investigated computationally and experimentally. The studies identify the sequence, 5'-AAAGAC-3', as the preferred template for further modifications and studies toward its practical implementations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868250PMC
http://dx.doi.org/10.1089/nat.2013.0415DOI Listing

Publication Analysis

Top Keywords

dna aptamer
8
aptamer template
8
computationally designed
4
designed dna
4
template specific
4
specific binding
4
binding phosphatidylserine
4
phosphatidylserine phospholipid
4
phospholipid phosphatidylserine
4
phosphatidylserine early
4

Similar Publications

Efficient and Rapid Enrichment of Extracellular Vesicles Using DNA Nanotechnology-Enabled Synthetic Nano-Glue.

Anal Chem

January 2025

The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.

Swift and efficient enrichment and isolation of extracellular vesicles (EVs) are crucial for enhancing precise disease diagnostics and therapeutic strategies, as well as elucidating the complex biological roles of EVs. Conventional methods of isolating EVs are often marred by lengthy and laborious processes. In this study, we introduce an innovative approach to enrich and isolate EVs by leveraging the capabilities of DNA nanotechnology.

View Article and Find Full Text PDF

Self-powered dual-photoelectrode photoelectrochemical aptasensor amplified by hemin/G-quadruplex-based DNAzyme.

Mikrochim Acta

January 2025

Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong, 266035, P.R. China.

A self-powered dual-electrode aptasensor was developed for the detection of tumor marker carcinoembryonic antigen (CEA). The composite BiVO/ZnInS, which is capable of forming a Z-scheme heterojunction, was chosen as the photoanode, and the AuNP/CuBiO complex was chosen as the photocathode in photoelectrochemical (PEC) detection. The experiments showed that the constructed self-powered dual-electrode system had a good photoelectric response to white light, and the photocurrent signal of the photocathode was significantly enhanced under the influence of the photoanode.

View Article and Find Full Text PDF

A spherical nucleic acid (SNA, AuNPs-aptamer) into CRISPR/Cas12a system combined with poly T-template copper nanoparticles as fluorescence reporter was fabricated to establish an amplification-free sensitive method for Staphylococcus aureus (S. aureus) detection. This method, named PTCas12a, utilizes the concept that the bifunction of SNA recognizes the S.

View Article and Find Full Text PDF

Serum assisted PD-L1 aptamer screening for improving its stability.

Sci Rep

January 2025

School of Public Health, Jining Medical University, Jining, 272067, People's Republic of China.

Aptamers have shown potential for diagnosing clinical markers and targeted treatment of diseases. However, their limited stability and short half-life hinder their broader applications. Here, a real sample assisted capture-SELEX strategy is proposed to enhance the aptamer stability, using the selection of specific aptamer towards PD-L1 as an example.

View Article and Find Full Text PDF

A fluorescent aptasensor was developed based on target-induced hairpin conformation switch coupled with nicking enzyme-assisted signal amplification (NESA) to detect the oligomeric form of ß-amyolid peptide (AβO) in cerebrospinal fluid. The hairpin DNA probe (HP) was specifically designed to recognize AβO. When AβO is present in the sensing system, it induces an HP conformational switch and triggers the NESA reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!