Hydrophobically modified chitosan (hmC) is a self-assembling polymer that has attracted recent attention for many applications, including as a hemostatic agent. One limitation with chitosan and its derivatives like hmC is that these polymers are soluble in water only under acidic conditions (because the pKa of chitosan is about 6.5), which could be undesirable for biomedical applications. To circumvent this limitation, we have synthesized a derivative of a C12-tailed hmC that is soluble in water at neutral pH. This water-soluble hmC (ws-hmC) is obtained by grafting O-carboxymethyl groups onto some of the primary hydroxyls on hmC. The solubility of ws-hmC at neutral pH is shown to be the result of a net anionic character for the polymer due to ionization of the carboxymethyl groups (in comparison, hmC is cationic). We also demonstrate that ws-hmC retains the self-assembling properties of hmC. Specifically, ws-hmC is able to induce gelation at neutral pH in dispersions of anionic surfactant vesicles as well as polymethylmethacrylate latex nanoparticles. Gelation is attributed to hydrophobic interactions between the hydrophobes on ws-hmC with vesicle bilayers and nanoparticle surfaces. In each case, gelation can be reversed by the addition of α-cyclodextrin, a supramolecule with a hydrophobic cavity that sequesters the hydrophobes on the polymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la4037343 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E3, Canada.
Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
Hypoxia, a condition that enhances tumor invasiveness and metastasis, poses a significant challenge for diverse cancer therapies. There is a pressing demand for hypoxia-responsive nanoparticles with integrated photodynamic functions in order to address the aforementioned issues and overcome the reduced efficacy caused by tumor hypoxia. Here, we report a hypoxia-responsive supramolecular nanoparticle SN@IR806-CB consisting of a dendritic drug-drug conjugate (IR806-Azo-CB) and anionic water-soluble [2]biphenyl-extended-pillar[6]arene modified with eight ammonium salt ions (AWBpP6) the synergy of π-π stacking interaction, host-guest complexation, and hydrophobic interactions for synergistic photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy (CT; , PTT-PDT-CT).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada. Electronic address:
Fruits are susceptible to ethylene ripening and microbial infestation, which can lead to spoilage and further significant economic losses. Thus, using functional preservation materials is an effective controlling technology to improve the post-harvest quality and extend the shelf life of fruits. Hence, a dual-function cellulose-based paper with exceptional antibacterial efficiency, favourable ethylene removal performance, improved mechanical and hydrophobic properties was prepared by covalently grafted antibacterial guanidine salt and surface-modified ethylene scavenger.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122, Jiangsu, China.
The synthesis of starch grafted with poly (hexafluorobutyl methacrylate) (PHFBMA) was achieved using the horseradish peroxidase (HRP)/acetophenone (ACAC) green initiating system. The modified starch was characterized through FT-IR, F NMR, XPS and EDS to confirm the successful grafting of PHFBMA onto starch backbone. The SEM analysis revealed that the introduction of PHFBMA led to a partial disruption of the crystalline structure of starch, suggesting that PHFBMA did not undergo physical adsorption onto starch.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
Pickering emulsion stabilized by food grade nanoparticles with stimulus response as a targeted delivery system for lipophilic bioactive compounds has attracted people's attention. In this study, ferulic acid was used to modify saccharified zein to prepare pH-sensitive nanoparticles for stabilizing Pickering emulsion. The structure, interface behavior, stability of Pickering emulsion and gastrointestinal digestion characteristics of nanoparticles in vitro were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!