Finding the correct partner: the meiotic courtship.

Scientifica (Cairo)

Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain.

Published: November 2013

Homologous chromosomes are usually separated at the entrance of meiosis; how they become paired is one of the outstanding mysteries of the meiotic process. Reduction of spacing between homologues makes possible the occurrence of chromosomal interactions leading to homology detection and the formation of bivalents. In many organisms, telomere-led chromosome movements are generated that bring homologues together. Additional movements produced by chromatin conformational changes at early meiosis may also facilitate homologous contacts. Organisms used in the study of meiosis show a surprising variety of strategies for homology detection. In dipterans, homologous chromosomes remain paired throughout most of development. Pairing seems to arise as a balance between promoter and suppressor pairing genes. Some fungi, plants and animals, use mechanisms based on recombinational interactions. Other mechanisms leading to homology search are recombination-independent and require specialized pairing sites. In the worm Caenorhabditis elegans, each chromosome carries a pairing center consisting of a chromosome-specific DNA-protein complex, and in the fission yeast Schizosaccharomyces pombe, the sme2 locus encodes a meiosis-specific non-coding RNA that mediates on homologous recognition. In addition, mismatch correction plays a relevant role, especially in polyploids, which evolved genetic systems that suppress pairing between non-homologous related (homoeologus) chromosomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820632PMC
http://dx.doi.org/10.6064/2012/509073DOI Listing

Publication Analysis

Top Keywords

homologous chromosomes
8
leading homology
8
homology detection
8
pairing
5
finding correct
4
correct partner
4
partner meiotic
4
meiotic courtship
4
homologous
4
courtship homologous
4

Similar Publications

The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.

View Article and Find Full Text PDF

Oligo-FISH barcode chromosome identification system provides novel insights into the natural chromosome aberrations propensity in the autotetraploid cultivated alfalfa.

Hortic Res

January 2025

Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi 832003, China.

Alfalfa is one of the most economically valuable forage crops in the world. However, molecular cytogenetic studies in alfalfa lag far behind other cash crops and have reached a bottleneck. Here, we developed a novel chromosome identification system by designing 21 oligo probes in specific regions of each chromosome, which can be used as a barcode to simultaneously distinguish all chromosomes in a cell.

View Article and Find Full Text PDF

Extensive homologous recombination safeguards oocyte genome integrity in mammals.

Nucleic Acids Res

January 2025

MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.

Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.

View Article and Find Full Text PDF

The epigenetic cofactor ENL (eleven-nineteen-leukemia) and the acetyltransferase MOZ (monocytic leukemia zinc finger) have vital roles in transcriptional regulation and are implicated in aggressive forms of leukemia. Here, we describe the mechanistic basis for the intertwined association of ENL and MOZ. Genomic analysis shows that ENL and MOZ co-occupy active promoters and that MOZ recruits ENL to its gene targets.

View Article and Find Full Text PDF

Protective immune responses require close interactions between conventional (Tconv) and regulatory T cells (Treg). The extracellular mediators and signaling events that regulate the crosstalk between these CD4 T cell subsets have been extensively characterized. However, how Tconv translate Treg-dependent suppressive signals at the chromatin level remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!