Increased Flavonoid Compounds from Fermented Houttuynia cordata using Isolated Six of Bacillus from Traditionally Fermented Houttuynia cordata.

Toxicol Res

Department of Pharmaceutical Engineering and College of Medical Life Science, Silla University, Busan 617-736, Korea.

Published: June 2012

Flavonoids, which form a major component in Houttuynia cordata Thunb., display a wide range of pharmacological activities. The expression of plant flavonoids is partly regulated by fermentation. Therefore, we studied the effects of fermentation on H. cordata in order to identify the strains present during the fermentation process, and to determine whether fermented H. cordata could be used as a probiotic. Our results showed that all 6 of the bacterial strains isolated from fermented H. cordata (FHC) belonged to the genus Bacillus. As expected, fermenting H cordata also increased the flavonoid content as increases were observed in the levels of rutin, quercitrin, and quercetin. To test the effects of fermentation, we treated LPS-stimulated RAW264.7 cells with non-fermented H. cordata extracts (HCE) or FHC extracts (FHCE). Compared to the HCE-treated cells, the FHCE-treated cells showed increased viability. No cytotoxic effects were detected in the FHCE-treated groups in the 2 cell lines used in the study, namely, RAW264.7 and RBL-2H3. FHCE-treated HepG2 cells showed decreased growth, compared to HCE-treated HepG2 cells. These results indicate that the fermented H. cordata predominantly contained Bacillus strains. Furthermore, FHCE are able to prevent LPS-induced inflammatory effects and inhibit the growth of HepG2 cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834406PMC
http://dx.doi.org/10.5487/TR.2012.28.2.117DOI Listing

Publication Analysis

Top Keywords

houttuynia cordata
12
fermented cordata
12
hepg2 cells
12
cordata
9
increased flavonoid
8
fermented houttuynia
8
effects fermentation
8
compared hce-treated
8
cells
6
fermented
5

Similar Publications

() is widely used in respiratory disease control as an important heat-clearing and detoxifying traditional Chinese medicine. It effectively clears away heat and toxins, eliminates carbuncles, and drains pus, and it is diuretic and detoxicating. The aim of this study is to review the botany, chemical composition, pharmacological effects, and quality control of to establish a better-quality evaluation system.

View Article and Find Full Text PDF

Eating "rubbish"? Exploring the herbal secrets of "Laji-He," a traditional herbal rice snack from southern China.

J Ethnobiol Ethnomed

January 2025

Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Lushan, 332900, China.

Background: Laji-He is a traditional rice-based snack from the Beibu Gulf region in southern China. In the Beibu Gulf region, "Laji-He" (literally "garbage He") signifies the removal of toxins from the body, making it a truly "green" food. Laji-He holds essential cultural and medicinal value, incorporating various medicinal plants into its preparation.

View Article and Find Full Text PDF

A chemical investigation of Streptomyces sp. GZWMJZ-662, an endophytic actinomycete isolated from Houttuynia cordata Thunb., has yielded eleven bohemamine dimers (1-11).

View Article and Find Full Text PDF

-Derived Exosome-Like Nanoparticles Mitigate Colitis in Mice via Inhibition of the NLRP3 Signaling Pathway and Modulation of the Gut Microbiota.

Int J Nanomedicine

January 2025

Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China.

Background: Plant-derived exosome-like nanoparticles (PELNs) have received widespread attention in treating ulcerative colitis (UC). However, the role of -derived exosome-like nanoparticles (HELNs) in UC remains unclear. This study aims to evaluate the efficacy of HELNs in treating colitis in mice and investigate its potential mechanisms.

View Article and Find Full Text PDF

Antioxidant and Antiaging Activity of Thunb. Ethyl Acetate Fraction in .

Nutrients

November 2024

Department of Food and Biotechnology, Woosuk University, Wanju 55338, Jeonbuk-do, Republic of Korea.

Background/objectives: In aerobic organisms, such as humans, oxygen radicals are inevitably produced. To counteract oxidation, the body generates antioxidant substances that suppress free radicals. However, levels of reactive oxygen species (ROS) increase due to aging and lifestyle factors, leading to exposure to various diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!