Pharmacological modulation of p53 activity is an attractive therapeutic strategy in cancers with wild-type p53. Presently in clinical trials, the small molecule Nutlin-3A competitively binds to HDM2, a key negative regulator of p53 and blocks its activity. We have described resistance mutations in HDM2 that selectively reduce affinity for Nutlin but not p53. In the present communication, we show that stapled peptides targeting the same region of HDM2 as Nutlin are refractory to these mutations, and display reduced discrimination between the wild-type and mutant HDM2s with regards to functional abrogation of interaction with p53. The larger interaction footprint afforded by stapled peptides suggests that this class of ligands may prove comparatively more resilient to acquired resistance in a clinical setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835680PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081068PLOS

Publication Analysis

Top Keywords

stapled peptides
12
p53
5
inhibition nutlin-resistant
4
hdm2
4
nutlin-resistant hdm2
4
hdm2 mutants
4
mutants stapled
4
peptides pharmacological
4
pharmacological modulation
4
modulation p53
4

Similar Publications

Peptide-Bismuth Tricycles: Maximizing Stability by Constraint.

Chemistry

January 2025

Australian National University, Research School of Chemistry, Sullivans Creek Road, ACT 2601, Canberra, AUSTRALIA.

Constrained peptides possess excellent properties for identifying lead compounds in drug discovery. While it has become increasingly straightforward to discover selective high-affinity peptide ligands, especially through genetically encoded libraries, their stability and bioavailability remain significant challenges. By integrating macrocyclization chemistry with bismuth binding, we generated series of linear, cyclic, bicyclic, and tricyclic peptides with identical sequences.

View Article and Find Full Text PDF

Amino groups are abundant in both natural and synthetic molecules, offering highly accessible sites for modifying native biorelevant molecules. Despite significant progress with more reactive thiol groups, methods for connecting two amino groups with reversible linkers for bioconjugation applications remain elusive. Herein, we report the use of oxidative decarboxylative condensation of glyoxylic acid to crosslink two alkyl amines via a compact formamidine linkage, applicable in both intra- and intermolecular contexts.

View Article and Find Full Text PDF

Macrocyclization or stapling is an important strategy for increasing the conformational stability and target-binding affinity of peptides and proteins, especially in therapeutic contexts. Atomistic simulations of such stapled peptides and proteins could help rationalize existing experimental data and provide predictive tools for the design of new stapled peptides and proteins. Standard approaches exist for incorporating nonstandard amino acids and functional groups into the force fields required for MD simulations and have been used in the context of stapling for more than a decade.

View Article and Find Full Text PDF

Tyrosinase-Catalyzed Peptide Stapling Using para-Amino Phenylalanine and Tyrosine Anchoring Residues.

Angew Chem Int Ed Engl

January 2025

Second Military Medical University, School of Pharmacy, 325 Guohe Road, 200433, Shanghai, CHINA.

Peptide stapling techniques have historically relied on metal-catalyzed chemical reactions, with no examples using enzymes. Here, inspired by tyrosinase-mediated oxidation, we describe the efficient side-chain to side-chain coupling of p-amino phenylalanine (Z) and tyrosine (Y) amino acids using a commercially available tyrosinase. Stapling reactions between the i, i+3 to i, i+7 positions were all performed, proceeding in good conversion and under mild conditions compatible with various side chains, functional motifs and ring sizes, with the Z-Y product found to be more stable and obtained in a higher yield than the Y-Z product.

View Article and Find Full Text PDF

Short-length peptides are used as therapeutics due to their high target specificity and low toxicity; for example, peptides are designed for targeting the interaction between oncogenic protein p53 and E3 ubiquitin ligase MDM2. These peptide therapeutics form a class of successful inhibitors. To design such peptide-based inhibitors, stapling is one of the methods in which amino acid side chains are stitched together to get conformationally rigid peptides, ensuring effective binding to their partners.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!