Artificial photosynthesis and the production of solar fuels could be a key element in a future renewable energy economy providing a solution to the energy storage problem in solar energy conversion. We describe a hybrid strategy for solar water splitting based on a dye sensitized photoelectrosynthesis cell. It uses a derivatized, core-shell nanostructured photoanode with the core a high surface area conductive metal oxide film--indium tin oxide or antimony tin oxide--coated with a thin outer shell of TiO2 formed by atomic layer deposition. A "chromophore-catalyst assembly" 1, [(PO3H2)2bpy)2Ru(4-Mebpy-4-bimpy)Rub(tpy)(OH2)](4+), which combines both light absorber and water oxidation catalyst in a single molecule, was attached to the TiO2 shell. Visible photolysis of the resulting core-shell assembly structure with a Pt cathode resulted in water splitting into hydrogen and oxygen with an absorbed photon conversion efficiency of 4.4% at peak photocurrent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864317 | PMC |
http://dx.doi.org/10.1073/pnas.1319628110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!