Self-assembly of soft hybrid materials directed by light and a magnetic field.

Adv Mater

Organic Chemistry Institute and Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.

Published: February 2014

Dual-responsive soft matter: A soft hybrid material composed of superparamagnetic nanoparticles and cyclodextrin vesicles self-assembles in microscale linear aggregates in water in response to magnetic field as well as light.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201304689DOI Listing

Publication Analysis

Top Keywords

soft hybrid
8
magnetic field
8
self-assembly soft
4
hybrid materials
4
materials directed
4
directed light
4
light magnetic
4
field dual-responsive
4
dual-responsive soft
4
soft matter
4

Similar Publications

Tailoring Water-in-DMSO Electrolyte for Ultra-stable Rechargeable Zinc Batteries.

Angew Chem Int Ed Engl

January 2025

University of Shanghai for Science and Technology, Institute of Energy Material Science, Shanghai 200093, Shanghai, CHINA.

Rechargeable zinc batteries (RZBs) are hindered by two primary challenges: instability of Zn anode and deterioration of the cathode structure in traditional aqueous electrolytes, largely attributable to the decomposition of active H2O. Here, we design and synthesize a non-flammable water-in-dimethyl sulfoxide electrolyte to address these issues. X-ray absorption spectroscopy, in situ techniques and computational simulations demonstrate that the activity of H2O in this electrolyte is extremely compressed, which not only suppresses the side reactions and increases the reversibility of Zn anode, but also diminishes the cathode dissolution and proton intercalation.

View Article and Find Full Text PDF

Microgels are versatile materials with applications across biomedicine, materials science, and beyond. Their controllable size and composition enables tailoring specific properties, yet characterizing their internal structures on the nanoscale remains challenging. Super-resolution fluorescence microscopy (SRFM) effectively analyzes sub-μm structures, including microgels, offering a tool for investigating more complex systems such as core-shell microgels.

View Article and Find Full Text PDF

Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).

View Article and Find Full Text PDF

A series of anionic poly(acrylamide--sodium acrylate)/poly(ethylene glycol), PAN/PEG, hybrids were conveniently synthesized free radical aqueous polymerization by integrating bentonite, kaolin, mica, graphene and silica, following a simple and eco-friendly crosslinking methodology. A comparative perspective was presented on how integrated nanofillers affect the physicochemical properties of hybrid gels depending on the differences in their structures. Among the five types of nanofillers, bentonite-integrated hybrid gel had the highest water absorbency, while graphene-integrated gel had the lowest.

View Article and Find Full Text PDF

Metastasis of alveolar soft part sarcoma (ASPS) to the adrenal gland is infrequent, with only eight patients reported in the literature. Here we present an ASPS in an adolescent girl presented as a hypervascular adrenal incidentaloma along with a review of the available literature. This study aims to serve as a reference to aid in the pre-operative radiological and histopathological diagnosis of this rare entity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!