In grasslands, sustained nitrogen loading would increase the proportion of assimilated carbon allocated to shoot growth (A shoot), because it would decrease allocation to roots and also encourage the contribution of species with inherently high A shoot. However, in situ measurements of carbon allocation are scarce. Therefore, it is unclear to what extent species that coexist in grasslands actually differ in their allocation strategy or in their response to nitrogen. We used a mobile facility to perform steady-state (13)C-labeling of field stands to quantify, in winter and autumn, the daily relative photosynthesis rate (RPR~tracer assimilated over one light-period) and A shoot (~tracer remaining in shoots after a 100 degree days chase period) in four individual species with contrasting morpho-physiological characteristics coexisting in a temperate grassland of Argentina, either fertilized or not with nitrogen, and either cut intermittently or grazed continuously. Plasticity in response to nitrogen was substantial in most species, as indicated by positive correlations between A shoot and shoot nitrogen concentration. There was a notable interspecific difference: productive species with higher RPR, enhanced by fertilization and characterized by faster leaf turnover rate, allocated ~20% less of the assimilated carbon to shoot growth than species of lower productivity (and quality) characterized by longer leaf life spans and phyllochrons. These results imply that, opposite to the expected response, sustained nitrogen loading would change little the A shoot of grassland communities if increases at the species-level are offset by decreases associated with replacement of 'low RPR-high A shoot' species by 'high RPR-low A shoot' species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-013-2838-xDOI Listing

Publication Analysis

Top Keywords

assimilated carbon
12
shoot growth
12
shoot
9
carbon shoot
8
sustained nitrogen
8
nitrogen loading
8
species
8
response nitrogen
8
shoot' species
8
nitrogen
7

Similar Publications

Resource recovery from wastewater by directing microbial metabolism toward production of value-added biochemicals.

Bioresour Technol

January 2025

Water Research Centre and Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand. Electronic address:

Dynamic oxygen fluctuations in activated sludge were investigated to enhance valuable biochemical production during wastewater treatment. Batch experiments compared constant aeration with rapid cycling between oxygen-rich and oxygen-poor states. Fluctuating oxygen concentrations (0-2 mg/L) significantly increased production of valuable biochemicals compared to constant oxygen concentration (2 mg/L).

View Article and Find Full Text PDF

Ecosystem services provided by terrestrial biomes, such as moisture recycling and carbon assimilation, are crucial components of the water, energy, and biogeochemical cycles. These biophysical processes are influenced by climate variability driven by distant ocean-atmosphere interactions, commonly referred to as teleconnections. This study aims to identify which teleconnections most significantly affect key biophysical processes in South America's two largest biomes: The Amazon and Cerrado.

View Article and Find Full Text PDF

Recent progresses and perspectives of polyethylene biodegradation by bacteria and fungi: A review.

J Contam Hydrol

January 2025

College of Resources and Environment, Yangtze University, Hubei, Wuhan 430100, China. Electronic address:

Plastics pollution has become a serious threat to the people and environment due to the mass production, unreasonable disposal and continuous pollution. Polyethylene (PE), one of the most utilized plastics all over the world, is considered as a highly recalcitrant environmental destruction problem on account of strong hydrophobicity and high molecular weight. Therefore, it is urgently necessary to seek economical and efficient treatment and disposal methods for PE.

View Article and Find Full Text PDF

Photoheterotrophic extracellular reduction of ferrihydrite activates diverse intracellular metabolic pathways in Rhodopseudomonas palustris for enhanced antibiotic degradation.

Water Res

January 2025

Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:

Anoxygenic photosynthetic bacteria (APB) have been frequently detected as a photoautotrophic Fe-carbon cycling drivers in photic and anoxic environment. However, the potential capacity of these bacteria for photoheterotrophic extracellular reduction of iron-containing minerals and their impact on the transformation of organic pollutants remain currently unknown. This study investigated the capacity of R.

View Article and Find Full Text PDF

Engineering carbon assimilation in plants.

J Integr Plant Biol

January 2025

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Carbon assimilation is a crucial part of the photosynthetic process, wherein inorganic carbon, typically in the form of CO, is converted into organic compounds by living organisms, including plants, algae, and a subset of bacteria. Although several carbon fixation pathways have been elucidated, the Calvin-Benson-Bassham (CBB) cycle remains fundamental to carbon metabolism, playing a pivotal role in the biosynthesis of starch and sucrose in plants, algae, and cyanobacteria. However, Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the key carboxylase enzyme of the CBB cycle, exhibits low kinetic efficiency, low substrate specificity, and high temperature sensitivity, all of which have the potential to limit flux through this pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!