Unlabelled: Mitochondrial glutaminase (GA) plays an essential role in cancer cell metabolism, contributing to biosynthesis, bioenergetics, and redox balance. Humans contain several GA isozymes encoded by the GLS and GLS2 genes, but the specific roles of each in cancer metabolism are still unclear. In this study, glioma SFxL and LN229 cells with silenced isoenzyme glutaminase KGA (encoded by GLS) showed lower survival ratios and a reduced GSH-dependent antioxidant capacity. These GLS-silenced cells also demonstrated induction of apoptosis indicated by enhanced annexin V binding capacity and caspase 3 activity. GLS silencing was associated with decreased mitochondrial membrane potential (ΔΨm) (JC-1 dye test), indicating that apoptosis was mediated by mitochondrial dysfunction. Similar observations were made in T98 glioma cells overexpressing glutaminase isoenzyme GAB, encoded by GLS2, though some characteristics (GSH/GSSG ratio) were different in the differently treated cell lines. Thus, control of GA isoenzyme expression may prove to be a key tool to alter both metabolic and oxidative stress in cancer therapy. Interestingly, reactive oxygen species (ROS) generation by treatment with oxidizing agents: arsenic trioxide or hydrogen peroxide, synergizes with either KGA silencing or GAB overexpression to suppress malignant properties of glioma cells, including the reduction of cellular motility. Of note, negative modulation of GLS isoforms or GAB overexpression evoked lower c-myc and bcl-2 expression, as well as higher pro-apoptotic bid expression. Combination of modulation of GA expression and treatment with oxidizing agents may become a therapeutic strategy for intractable cancers and provides a multi-angle evaluation system for anti-glioma pre-clinical investigations.
Key Message: Silencing GLS or overexpressing GLS2 induces growth inhibition in glioma cell lines. Inhibition is synergistically enhanced after arsenic trioxide (ATO) or H2O2 treatment. Glutatione levels decrease in GLS-silenced cells but augment if GLS2 is overexpressed. ROS synergistically inhibit cell migration by GLS silencing or GLS2 overexpression. c-myc, bid, and bcl-2 mediate apoptosis resulting from GLS silencing or GLS2 overexpression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327995 | PMC |
http://dx.doi.org/10.1007/s00109-013-1105-2 | DOI Listing |
J Biol Chem
December 2024
Department of Molecular Medicine, Cornell University, Ithaca, New York, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA. Electronic address:
Understanding the fundamental biochemical and metabolic requirements for the replication of coronaviruses within infected cells is of notable interest for the development of broad-based therapeutic strategies, given the likelihood of the emergence of new pandemic-potential virus species, as well as future variants of SARS-CoV-2. Here we demonstrate members of the glutaminase family of enzymes (GLS and GLS2), which catalyze the hydrolysis of glutamine to glutamate (i.e.
View Article and Find Full Text PDFAppl Biochem Biotechnol
October 2024
Department of Cardiovascular Surgery, the First Affiliated Hospital of Anhui Medical University, 218, Jixi Road, Hefei City, 230022, Anhui Province, China.
Cardiovascular diseases are disorders of the heart and vascular system that cause high mortality rates worldwide. Vascular endothelial cell (VEC) injury caused by oxidative stress (OS) is an important event in the development of various cardiovascular diseases, including ischemic heart disease. This study aimed to investigate the critical roles and molecular mechanisms of long non-coding RNA (lncRNA) SNHG16 in regulating vascular endothelial cell injury under oxidative stress.
View Article and Find Full Text PDFJ Biol Chem
October 2024
Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA. Electronic address:
Chronic stress can have adverse consequences on human health by disrupting the hormonal balance in our body. Earlier, we observed elevated levels of cortisol, a primary stress hormone, and some exosomal microRNAs in the serum of patients with breast cancer. Here, we investigated the role of cortisol in microRNA induction and its functional consequences.
View Article and Find Full Text PDFClin Respir J
August 2024
Department of Cardiothoracic Surgery, Sichuan Mianyang 404 Hospital, Mianyang City, Sichuan Province, China.
Background: Lung adenocarcinoma (LUAD) is a fatal disease with metabolic abnormalities. The dysregulation of S100 calcium-binding protein A2 (S100A2), a member of the S100 protein family, is connected to the development of various cancers. The impact of S100A2 on the LUAD occurrence and metastasis, however, has not yet been reported.
View Article and Find Full Text PDFNat Commun
July 2024
Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
Glutaminase (GLS) is directly related to cell growth and tumor progression, making it a target for cancer treatment. The RNA-binding protein HuR (encoded by the ELAVL1 gene) influences mRNA stability and alternative splicing. Overexpression of ELAVL1 is common in several cancers, including breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!