Locking intracellular helices 2 and 3 together inactivates human P-glycoprotein.

J Biol Chem

From the Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.

Published: January 2014

The P-glycoprotein (P-gp) drug pump (ABCB1) has two transmembrane domains and two nucleotide-binding domains (NBDs). Coupling of the drug-binding sites in the transmembrane domains to the NBDs occurs through interaction of the intracellular helices (IHs) with residues in the NBDs (IH1/IH4/NBD1 and IH2/IH3/NBD2). We showed previously that cross-linking of cysteines in IH3 and IH1 with a short cross-linker mimicked drug binding as it activated P-gp ATPase activity. Here we show that residue A259C(IH2) could be directly cross-linked to W803C(IH3). Cross-linking was inhibited by the presence of ATP and adenosine 5'-(β,γ-imino)triphosphate but not by ADP. Cross-linking of mutant A259C/W803C inhibited its verapamil-stimulated ATPase activity mutant, but activity was restored after addition of dithiothreitol. Because these residues are close to the ball-and-socket joint A266C(IH2)/Phe(1086)(NBD2), we mutated the adjacent Tyr(1087)(NBD2) close to IH3. Mutants Y1087A and Y1087L, but not Y1087F, were misprocessed, and all inhibited ATPase activity. Mutation of hydrophobic residues (F793A, L797A, L814A, and L818A) flanking IH3 also inhibited maturation. The results suggest that these residues, together with Trp(803) and Phe(804), form a large hydrophobic pocket. The results show that there is an important hydrophobic network at the IH2/IH3/NBD2 transmission interface that is critical for folding and activity of P-gp.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879546PMC
http://dx.doi.org/10.1074/jbc.M113.527804DOI Listing

Publication Analysis

Top Keywords

atpase activity
12
intracellular helices
8
transmembrane domains
8
domains nbds
8
activity
5
locking intracellular
4
helices inactivates
4
inactivates human
4
human p-glycoprotein
4
p-glycoprotein p-glycoprotein
4

Similar Publications

The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.

View Article and Find Full Text PDF

While acute exercise affects sarcoplasmic reticulum (SR) function, the impact of resistance training remains unclear. The purpose of the present study was to investigate SR Ca handling plasticity in response to moderate- and high-volume strength training in elite rowers. Twenty elite male (n = 12) and female (n = 8) rowers performed three weekly strength training sessions for 8 weeks and were randomly allocated to either perform 3 sets (3-SET) or progressive increase from 5 to 10 sets (10-SET) of 10 repetitions during the training period.

View Article and Find Full Text PDF

RALF proteins-a monitoring hub for regulating salinity tolerance in plants.

Front Plant Sci

January 2025

International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China.

View Article and Find Full Text PDF

The vacuolar ATPase (V-ATPase; V V ) is a multi-subunit rotary nanomotor proton pump that acidifies organelles in virtually all eukaryotic cells, and extracellular spaces in some specialized tissues of higher organisms. Evidence suggests that metastatic breast cancers mislocalize V-ATPase to the plasma membrane to promote cell survival and facilitate metastasis, making the V-ATPase a potential drug target. We have generated a library of camelid single-domain antibodies (Nanobodies; Nbs) against lipid-nanodisc reconstituted yeast V-ATPase V proton channel subcomplex.

View Article and Find Full Text PDF

Homeostasis is a driving principle in physiology. To achieve homeostatic control of neural activity, neurons monitor their activity levels and then initiate corrective adjustments in excitability when activity strays from a set point. However, fluctuations in the brain microenvironment, such as temperature, pH, and other ions represent some of the most common perturbations to neural function in animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!