DNA probe based colorimetric method for detection of rifampicin resistance of Mycobacterium tuberculosis.

J Microbiol Methods

Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 08, Sri Lanka.

Published: January 2014

Rifampicin resistance of Mycobacterium tuberculosis is due to the occurrence of point mutations of the rpoB gene and the site of mutations vary geographically. Commercialized molecular based methods are not able to comprehensively detect rifampicin resistance as they target a limited number of gene mutations which are thought to be common. The aim of the study was to establish a low cost DNA probe based colorimetric method that can be customized for detection of rifampicin resistance of M. tuberculosis. Thus, enzyme-linked oligosorbent assay (ELOSA) was developed for the detection of polymerase chain reaction (PCR) amplified fragments of rpoB gene of M. tuberculosis DNA on microtiter plates. Forty two M. tuberculosis isolates (rifampicin resistant and susceptible isolates identified by agar proportion method) were used for developing and validating the assay. The point mutations of resistant isolates had been previously determined by DNA sequencing. Two fragments of rpoB gene were labeled with digoxigenin by PCR. The amplified products were hybridized with selected allele specific probes for three mutations and its wild types (six probes) which were captured onto streptavidin coated microtiter plates and detected by color development. Both sensitivity and specificity of all probes were ≥96% and there was excellent discrimination (area under the curve (AUC)>0.9) between rifampicin susceptible cases and resistant cases. The probe-based colorimetric assay (PCR-ELOSA) developed in this study showed good agreement with reference mutations that were confirmed by DNA sequencing. In conclusion, PCR-ELOSA is a reliable and economical assay that can be customized for detection of rifampicin resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2013.11.006DOI Listing

Publication Analysis

Top Keywords

rifampicin resistance
20
detection rifampicin
12
rpob gene
12
dna probe
8
probe based
8
based colorimetric
8
colorimetric method
8
resistance mycobacterium
8
mycobacterium tuberculosis
8
point mutations
8

Similar Publications

: Tuberculosis (TB) is preventable and curable, but multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) pose significant challenges worldwide due to the limited treatment options, lengths of therapies, and high rates of treatment failure. The management of MDR-TB has been revolutionized by all oral anti-TB drug regimens that are likely to improve adherence and treatment outcomes. These regimes include bedaquiline (B), pretomanid (P), and linezolid (L) (BPaL), and moxifloxacin if resistance to fluoroquinolones is not detected (BPaLM).

View Article and Find Full Text PDF

Background: There are few data on the treatment of children and adolescents with multidrug-resistant (MDR) or rifampicin-resistant (RR) tuberculosis, especially with more recently available drugs and regimens. We aimed to describe the clinical and treatment characteristics and their associations with treatment outcomes in this susceptible population.

Methods: We conducted a systematic review and individual participant data meta-analysis.

View Article and Find Full Text PDF

Introduction: The WHO endorsed the Xpert MTB/RIF (Xpert) technique since 2011 as initial test to diagnose rifampicin-resistant tuberculosis (RR-TB). No systematic review has quantified the proportion of pretreatment attrition in RR-TB patients diagnosed with Xpert in high TB burden countries.Pretreatment attrition for RR-TB represents the gap between patients diagnosed and those who effectively started anti-TB treatment regardless of the reasons (which include pretreatment mortality (death of a diagnosed RR-TB patient before starting adequate treatment) and/or pretreatment loss to follow-up (PTLFU) (drop-out of a diagnosed RR-TB patient before initiation of anti-TB treatment).

View Article and Find Full Text PDF

It was a general belief that drug resistance in Mycobacterium tuberculosis (Mtb) was associated with lesser virulence, particularly rifampicin resistance, which is usually produced by mutations in the RNA polymerase Beta subunit (RpoB). Interestingly, this kind of bacterial mutations affect gene transcription with significant effects on bacterial physiology and metabolism, affecting also the bacterial antigenic constitution that in consequence can produce diverse immune responses and disease outcome. In the present study, we show the results of the Mtb clinical isolate A96, which is resistant to rifampicin and when used to infect BALB/c mice showed hypervirulence, apparently by rapidly polarization of the Th2 immune response through early and high production of IL-4.

View Article and Find Full Text PDF

Unveiling the critical roles of cellular metabolism suppression in antibiotic tolerance.

NPJ Antimicrob Resist

June 2024

William Brookshire Chemical and Biomolecular Engineering Department, University of Houston, Houston, TX, USA.

Metabolic inhibitors are known to exhibit complex interactions with antibiotics in bacteria, potentially acting as antagonists by inducing cell dormancy and promoting cell survival. However, the specific synergistic or antagonistic effects of these inhibitors depend on factors like their mechanisms of action, concentrations, and treatment timings, which require further investigation. In our study, we systematically explored the synergistic interactions of various metabolic inhibitors-such as chloramphenicol (a translation inhibitor), rifampicin (a transcription inhibitor), arsenate (an ATP production inhibitor), and thioridazine (a PMF inhibitor)-in combination with ofloxacin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!