Background: Pneumonia has traditionally been classified into two subtypes: community-acquired pneumonia (CAP) and nosocomial pneumonia (NP). Recently, a new entity has been defined, called healthcare-associated pneumonia (HCAP). Few studies have investigated the potential of population-based, electronic, healthcare databases to identify the incidences of these three subtypes of pneumonia. The aim of this study was to estimate the burden of the three subtypes of pneumonia in elderly patients (aged 65+ years) in a large region of central Italy.
Methods: A retrospective cohort study was performed using linked regional Hospital Information System and Mortality Register. All episodes of pneumonia in elderly patients, who were discharged from the hospital in 2006-2008, were selected for the study. Following a validated ICD-9-coding algorithm, incidents of pneumonia events were classified into three groups (HCAP; probable nosocomial pneumonia, PNP; and CAP). Hospitalisation rates were calculated by age group (65-79, 80+), gender, and year, using the population from the Institute of Statistics (ISTAT) census estimates as denominators.
Results: A total of 26,239 pneumonia events occurred in 24,338 patients residing in the Lazio region, aged 65+ years: 2257 HCAP, 6775 PNP, and 17,107 CAP. For all subtypes, the proportion of males was greater than females. Comorbidity status was more severe in HCAP than in the other categories. In-hospital mortality, 30-day mortality, and length of hospital stay were twice higher in HCAP than in CAP episodes. The annual incidence rates were 0.7, 2.1, and 5.4 episodes per 1000 residents for HCAP, PNP, and CAP, respectively. From 2006 to 2008, incidence rates slightly increased for all three subtypes.
Conclusion: Health care databases can be used to give a timely and inexpensive picture of the epidemiology of pneumonia. HCAP represents a distinct category of pneumonia, with the longest stay, highest mortality, and the greatest comorbidity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4222665 | PMC |
http://dx.doi.org/10.1186/1471-2334-13-559 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!