Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were enhanced by amendment with lactate or acetate as electron donors but not by H2, and no reduction occurred in sterilized controls. Addition of 2-(14)C-acetate to Stibnite Mine microcosms resulted in the production of (14)CO2 coupled to Sb(V) reduction, suggesting that this process proceeds by a dissimilatory respiratory pathway in those sediments. Antimony(V) reduction in Searsville Lake sediments was not coupled to acetate mineralization and may be associated with Sb-resistance. The microcosms and enrichment cultures also reduced sulfate, and the precipitation of insoluble Sb(III)-sulfide complexes was a major sink for reduced Sb. The reduction of Sb(V) by Stibnite Mine sediments was inhibited by As(V), suggesting that As(V) is a preferred electron acceptor for the indigenous community. These findings indicate a novel pathway for anaerobic microbiological respiration and suggest that communities capable of reducing high concentrations of Sb(V) commonly occur naturally in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es403312j | DOI Listing |
Water Res
January 2025
Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China. Electronic address:
Sulfide mineral oxidation has been recognized as the key driver of arsenic (As) and antimony (Sb) mobility in mining-impacted groundwater. However, the role of carbonate and silicate weathering and secondary mineral precipitation in this process remain unknown. A comprehensive geochemical study of groundwater was conducted in an Sb-mining area, Hunan, China, with samples collected from aquifers of the Xikuangshan Formation (Dx), the Shetianqiao Formation (Ds ), and the Lower Carboniferous Formation (Cy).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Environmental Geochemistry, IRNASA (CSIC), C/ Cordel de Merinas 40-52, Salamanca 37008, Spain. Electronic address:
This study explored the feasibility of depositing protective coatings with an Sb scavenger function on mine waste rocks derived from the exploitation of stibnite deposits. Encapsulation treatments were performed using ferrous sulfate as the coating precursor. Different Fe/Sb molar ratios (0.
View Article and Find Full Text PDFJ Environ Sci (China)
January 2025
School of Environment Studies, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Mine Ecological Effects and Systematic Restoration, Ministry of Natural Resources, Beijing 100081, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China.
The environmental threat posed by stibnite is an important geoenvironmental issue of current concern. To better understand stibnite oxidation pathways, aerobic abiotic batch experiments were conducted in aqueous solution with varying δO value at initial neutral pH for different lengths of time (15-300 days). The sulfate oxygen and sulfur isotope compositions as well as concentrations of sulfur and antimony species were determined.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2024
Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, Pl. Manuel Meca 1, 13400, Almadén, Ciudad Real, Spain.
The soil-plant transfer of trace elements is a complex system in which many factors are involved such as the availability and bioavailability of elements in the soil, climate, pedological parameters, and the essential or toxic character of the elements. The present study proposes the evaluation of the use of multielement contents in vascular plants for prospecting ore deposits of trace elements of strategic interest for Europe. To accomplish this general goal, a study of the soil-plant transfer of major and trace elements using Quercus ilex as a study plant has been developed in the context of two geological domains with very different characteristics in geological terms and in the presence of ore deposits: the Almadén syncline for Hg and the Guadalmez syncline for Sb.
View Article and Find Full Text PDFEnviron Pollut
November 2023
School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China.
The Xikuangshan (XKS) mine was selected for a comprehensive Sb-related hydrogeochemical study because of its significant Sb contamination in water systems. Hydrochemical data, specifically multi-isotope (H, O, S, and Sr) data, were conducted to elucidate the primary sources and migration processes of Sb responsible for water system contamination. At the XKS Sb mine, water is near-neutral to alkaline and is characterized by high concentrations of SO and Sb.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!