Chitosan-caseinate bilayer coatings for paper packaging materials.

Carbohydr Polym

Laboratoire des Substances Naturelles (LSN), Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Pôle Technologique de Sidi Thabet, 2020 Sidi Thabet, Tunisia. Electronic address:

Published: January 2014

Papers coated with caseinate and caseinate/chitosan bilayer films were developed. Caseinate, chitosan and caseinate/chitosan films were preliminary characterized by FTIR spectroscopy and thermal stability analyses. The effects of coating weight, caseinate concentration (7%, 10%, and 12%, w/w), and coating application methods (single layer and bilayer) on the physical and mechanical properties of coated papers were studied. Increasing the concentration of caseinate led to a decrease in water vapor permeability (WVP) of the resulting coated paper sheets. Chitosan significantly (p<0.05) increased the elongation at break (%E) of coated paper. However, the application of chitosan as a second layer on wet or dry caseinate films did not significantly affect (p>0.05) the tensile strength (TS) of coated paper. The greatest reduction in paper WVP is achieved by addition of a chitosan layer to the dried preformed caseinate-coated paper.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2013.08.086DOI Listing

Publication Analysis

Top Keywords

coated paper
8
paper
5
chitosan-caseinate bilayer
4
bilayer coatings
4
coatings paper
4
paper packaging
4
packaging materials
4
materials papers
4
coated
4
papers coated
4

Similar Publications

Calcium Phosphate (CaP) Composite Nanostructures on Polycaprolactone (PCL): Synergistic Effects on Antibacterial Activity and Osteoblast Behavior.

Polymers (Basel)

January 2025

Division of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea.

Bone tissue engineering aims to develop biomaterials that are capable of effectively repairing and regenerating damaged bone tissue. Among the various polymers used in this field, polycaprolactone (PCL) is one of the most widely utilized. As a biocompatible polymer, PCL is easy to fabricate, cost-effective, and offers consistent quality control, making it a popular choice for biomedical applications.

View Article and Find Full Text PDF

Refractive index (RI) and temperature (T) are both critical environmental parameters for environmental monitoring, food production, and medical testing. The paper develops a D-shaped photonic crystal fiber (PCF) sensor to measure RI and T simultaneously. Its cross-sectional structure encompasses a hexagonal-hole lattice, with one hole selectively filled with toluene for temperature sensing.

View Article and Find Full Text PDF

Cellulose nanocrystals (CNCs) prepared by sulfuric acid hydrolysis were added to phthalocyanine green colour pastes with a surfactant to improve stability. The particle size, zeta potential, absorbance, and microstructure of the colour pastes were analyzed and characterized. The mechanism of CNCs to enhance the stability of hydrophobic phthalocyanine green in water was investigated.

View Article and Find Full Text PDF

Aluminum and its alloys are widely used in the busbar structures of electrolytic aluminum production. However, they are prone to corrosion and wear damage during use, leading to a decline in current-transmission efficiency and potentially causing safety issues. To repair damaged aluminum busbars, this paper explores the feasibility of using cold spraying technology for surface restoration.

View Article and Find Full Text PDF

Embedding stacked HTS tapes into twisted slots is one design approach for constructing fusion conductors. This paper adopts a Cable-in-Conduit Conductor (CICC) structure, utilizing commercially REBCO coated conductors. The cable framework is made of copper and features six helically twisted slots filled with 2G HTS tapes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!