The structure of high molecular weight laminaran from brown alga Eisenia bicyclis was investigated by chemical and enzymatic methods, NMR spectroscopy and mass spectrometry. The laminaran from E. bicyclis was characterized as 1,3;1,6-β-D-glucan with the high content of 1,6-linked glucose residues (ratio of bonds 1,3:1,6=1.5:1), which are both in the branches and in the main chain of the laminaran. The degree of polymerization of fragments, building from 1,3-linked glucose residues with single glucose branches at C-6 or without it, was no more than four glucose residues. The main part of 1,3-linked glucose blocks was builded from disaccharide fragments. 1,6-Linked glucose residues were localized basically on non-reduced ends of molecules. The degree of polymerization of 1,6-linked blocks was not greater than three glucose residues. Laminaran contained laminarioligosaccharides, gentiobiose, gentiotriose and single glucose residues in the branches at the C-6. Laminaran and its products of enzymatic hydrolysis inhibited a colony formation of human melanoma SK-MEL-28 and colon cancer DLD-1 cells. It was shown that decreasing the molecular weight of native laminaran to a determined limit (degree of polymerization 9-23) and increasing the content of 1,6-linked glucose residues increased the anticancer effect. Therefore, they may be perspective antitumor agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2013.08.037 | DOI Listing |
Front Immunol
January 2025
Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.
O-GlcNAcylation is a dynamic post-translational modification involving the attachment of N-acetylglucosamine to serine and threonine residues. This review emphasizes its role in regulating the signaling pathways of pyroptosis. Specifically, the O-GlcNAcylation of GSDMD is linked to the modulation of pyroptosis, suggesting that enhancing O-GlcNAcylation of GSDMD could be crucial for improving hypoperfusion in sepsis.
View Article and Find Full Text PDFJ Comput Aided Mol Des
December 2024
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, UP, 201313, India.
J Biol Chem
December 2024
Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China.
2-O-α-Glucosylglycerol (GG) is a natural heteroside synthesized by many cyanobacteria and a few heterotrophic bacteria under salt stress conditions. Bacteria produce GG in response to stimuli and degrade it once the stimulus diminishes. Heterotrophic bacteria utilize GG phosphorylase (GGP), a member of the GH13_18 family, via a two-step process consisting of phosphorolysis and hydrolysis for GG catabolism.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China.
Cholesterol (Cho) is commonly used to stabilize nanoliposomes; however, there is controversy on the relationship between Cho and health. In this study, we developed a novel multifunctional nanoliposome utilizing structurally similar sitogluside (SG) and dioscin (Dio) instead of Cho to anchor the phospholipid bilayer and synergistically modulate the membrane properties of the nanoliposome (DPPC or DOPC). The storage and gastrointestinal tract stability experiment demonstrated that the changes of physical and chemical properties, including the significantly reduced size and Dio retention rate of nanoliposomes synergistically modulated by SG and Dio compared to those of SG alone, regulated nanoliposomes.
View Article and Find Full Text PDFBiophys Chem
December 2024
School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China.
Glucose isomerase is generally used in the industrial production of high-fructose corn syrup, and a heat- and acid-resistant glucose isomerase is preferred. However, most glucose isomerases exhibit low activity or inactivation at low pH. In this study, we demonstrated that two combination mutants formed by introducing positive and negative charges near the active site and on the surface of the enzyme demonstrated a successful reduction in the optimal pH and increase in the specific activity of glucose isomerase from Thermotoga maritima (TMGI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!