Background: Lysine Specific Demethylase (LSD1 or KDM1A) in complex with its co-repressor protein CoREST catalyzes the demethylation of the H3 histone N-terminal tail and is currently one of the most promising epigenetic targets for drug discovery against cancer and neurodegenerative diseases. Models of non-covalent binding, such as lock and key, induced-fit, and conformational selection could help explaining the molecular mechanism of LSD1/CoREST-H3-histone association, thus guiding drug discovery and design efforts. Here, we quantify the extent to which LSD1/CoREST substrate binding is consistent with these hypothetical models using LSD1/CoREST conformational ensembles obtained through extensive explicit solvent molecular dynamics (MD) simulations.
Results: We find that an induced-fit model is the most representative of LSD1/CoREST-H3-histone non-covalent binding and accounts for the local conformational changes occurring in the H3-histone binding site. We also show that conformational selection - despite in principle not ruled out by this finding - is minimal, and only relevant when global properties are considered, e.g. the nanoscale motion of the LSD1/CoREST clamp.
Conclusion: The induced-fit mechanism revealed by our MD simulation study will aid the inclusion of protein dynamics for the discovery and design of LSD1 inhibitors targeting the H3-histone binding region. On a general basis, our study indicates the importance of using multiple metrics or selection schemes when testing alternative hypothetical mechanistic models of non-covalent binding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4175114 | PMC |
http://dx.doi.org/10.1186/2046-1682-6-15 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!