A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DNA-templated Ag nanoclusters as fluorescent probes for sensing and intracellular imaging of hydroxyl radicals. | LitMetric

We have developed a simple, rapid and label-free sensor for the essential biological OH radicals based on the fluorescence quenching of DNA-templated Ag nanoclusters (DNA-Ag NCs). The OH radicals generated from the Fenton reagent attack and cleave the DNA template, which disturbs the microenvironments around Ag NCs, resulting in spontaneous aggregation due to the lack of stabilization and further the quenching of the Ag NCs fluorescence. These changes in fluorescence intensity allow sensing of OH radicals with good sensitivity and selectivity under optimal conditions. The sensor can be also applied for quantifying the radical scavenging action of antioxidants. Various characterizations including absorption spectra, fluorescence lifetimes, light scattering (LS) spectra, transmission electron microscopy (TEM), dark field light scattering imaging, and circular dichroism (CD) spectrometry have been employed to illustrate the proposed sensing mechanism. Further investigations demonstrate that the fluorescent probe could penetrate into intact cell membranes to selectively detect intracellular OH radicals induced by the phorbol myristate acetate (PMA) stimulation. These advantageous characteristics make the fluorescent DNA-Ag NCs potentially useful as a new candidate to monitor OH in broad biosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2013.09.021DOI Listing

Publication Analysis

Top Keywords

dna-templated nanoclusters
8
dna-ag ncs
8
light scattering
8
radicals
5
nanoclusters fluorescent
4
fluorescent probes
4
probes sensing
4
sensing intracellular
4
intracellular imaging
4
imaging hydroxyl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!