Identification of arsenolipids and their degradation products in cod-liver oil.

Talanta

Trace Element Speciation Laboratory (TESLA), Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK; Department of Chemistry, Ambrose Alli University, Ekpoma, Nigeria. Electronic address:

Published: January 2014

Oils from marine samples are known to contain high concentrations of arsenolipids. However, their identification in lipid matrix poses a significant challenge especially when present in low concentrations. Here, we report the identification of sixteen arsenolipids in cod-liver oil. The fish oil was fractionated on a silica gel column and the fraction enriched with arsenic analysed using RP-HPLC online with ICP-MS and ES-Orbitrap-MS. Among the arsenolipids identified nine compounds have not been reported before. Structural assignment was achieved by arsenic signal from ICP-MS, retention time behaviour and accurate mass determination of fragment and molecular peaks. In addition, the unknown degradation products of arsenolipids eluting in the void volume were investigated using fraction collection, cation exchange chromatography and accurate mass determination, and were found to contain predominantly dimethylarsinic acid (DMA) with trace amounts of methylarsonic acid (MA), dimethylarsenopropanoic acid (DMAP) and dimethylarsenobutanoic acid (DMAB). This finding is essential in epidemiologic studies where urinary DMA and other arsenic metabolites have been used as biomarker in accessing human exposure to arsenic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2013.09.056DOI Listing

Publication Analysis

Top Keywords

degradation products
8
cod-liver oil
8
accurate mass
8
mass determination
8
identification arsenolipids
4
arsenolipids degradation
4
products cod-liver
4
oil oils
4
oils marine
4
marine samples
4

Similar Publications

Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.

Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.

View Article and Find Full Text PDF

Creatinine production rate is an integrative indicator to monitor muscle status in critically ill patients.

Crit Care

January 2025

Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.

Background: Both quantitative and qualitative aspects of muscle status significantly impact clinical outcomes in critically ill patients. Comprehensive monitoring of baseline muscle status and its changes is crucial for risk stratification and management optimization. However, repeatable and accessible indicators are lacking.

View Article and Find Full Text PDF

Background: Streptomyces is a highly diverse genus known for the production of secondary or specialized metabolites with a wide range of applications in the medical and agricultural industries. Several thousand complete or nearly complete Streptomyces genome sequences are now available, affording the opportunity to deeply investigate the biosynthetic potential within these organisms and to advance natural product discovery initiatives.

Results: We perform pangenome analysis on 2371 Streptomyces genomes, including approximately 1200 complete assemblies.

View Article and Find Full Text PDF

Early-onset (EOCC) and late-onset cervical cancers (LOCC) represent two clinically distinct subtypes, each defined by unique clinical manifestations and therapeutic responses. However, their immunological profiles remain poorly explored. Herein, we analyzed single-cell transcriptomic data from 4 EOCC and 4 LOCC samples to compare their immune architectures.

View Article and Find Full Text PDF

Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!