Birth-order differences can drive natural selection on aging.

Evolution

Department of Biology, Stanford University, Stanford, California, 94305; Department of Public Health and Policy, University of Liverpool, Liverpool, L69 3GB, United Kingdom.

Published: March 2014

Senescence-the deterioration of survival and reproductive capacity with increasing age-is generally held to be an evolutionary consequence of the declining strength of natural selection with increasing age. The diversity in rates of aging observed in nature suggests that the rate at which age-specific selection weakens is determined by species-specific ecological factors. We propose that, in iteroparous species, relationships between parental age, offspring birth order, and environment may affect selection on senescence. Later-born siblings have, on average, older parents than do first borns. Offspring born to older parents may experience different environments in terms of family support or inherited resources, factors often mediated by competition from siblings. Thus, age-specific selection on parents may change if the environment produces birth-order related gradients in reproductive success. We use an age-and-stage structured population model to investigate the impact of sibling environmental inequality on the expected evolution of senescence. We show that accelerated senescence evolves when later-born siblings are likely to experience an environment detrimental to lifetime reproduction. In general, sibling inequality is likely to be of particular importance for the evolution of senescence in species such as humans, where family interactions and resource inheritance have important roles in determining lifetime reproduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075147PMC
http://dx.doi.org/10.1111/evo.12319DOI Listing

Publication Analysis

Top Keywords

natural selection
8
age-specific selection
8
later-born siblings
8
older parents
8
evolution senescence
8
lifetime reproduction
8
selection
5
birth-order differences
4
differences drive
4
drive natural
4

Similar Publications

The great diversity of specialist plant-feeding insects suggests that host plant shifts may initiate speciation, even without geographic barriers. Pheromones and kairomones mediate sexual communication and host choice, and the response to these behaviour-modifying chemicals is under sexual and natural selection, respectively. The concept that the interaction of mate signals and habitat cues facilitates reproductive isolation and ecological speciation is well established, while the traits and the underlying sensory mechanisms remain unknown.

View Article and Find Full Text PDF

A Recursive Model Approach to Include Epigenetic Effects in Genetic Evaluations Using Simulated DNA Methylation Effects.

J Anim Breed Genet

January 2025

Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Madrid, Spain.

The advancement of epigenetics has highlighted DNA methylation as an intermediate-omic influencing gene regulation and phenotypic expression. With emerging technologies enabling the large-scale and affordable capture of methylation data, there is growing interest in integrating this information into genetic evaluation models for animal breeding. This study used methylome information from six dairy cows to simulate the methylation profile of 13,183 genotyped animals.

View Article and Find Full Text PDF

Wheat breeders are constantly looking for genes and alleles that increase grain yield. One key strategy is finding new genetic resources in the wild and domesticated gene pools of related species with genes affecting grain size. This study explored a natural population of Triticum turgidum (L.

View Article and Find Full Text PDF

Background: Osteoporosis is a common age-related disease with disabling consequences, the early diagnosis of which is difficult due to its long and hidden course, which often leads to diagnosis only after a fracture. In this regard, great expectations are placed on advanced developments in machine learning technologies aimed at predicting osteoporosis at an early stage of development, including the use of large data sets containing information on genetic and clinical predictors of the disease. Nevertheless, the inclusion of DNA markers in prediction models is fraught with a number of difficulties due to the complex polygenic and heterogeneous nature of the disease.

View Article and Find Full Text PDF

Unlabelled: The impact of cancer driving mutations in regulating immunosurveillance throughout tumor development remains poorly understood. To better understand the contribution of tumor genotype to immunosurveillance, we generated and validated lentiviral vectors that create an epi-allelic series of increasingly immunogenic neoantigens. This vector system is compatible with autochthonous Cre-regulated cancer models, CRISPR/Cas9-mediated somatic genome editing, and tumor barcoding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!