It is well established that inherited human aldehyde dehydrogenase 2 (ALDH-2) deficiency reduces the risk for alcoholism. Kudzu plants and extracts have been used for 1,000 years in traditional Chinese medicine to treat alcoholism. Kudzu contains daidzin, which inhibits ALDH-2 and suppresses heavy drinking in rodents. Decreased drinking due to ALDH-2 inhibition is attributed to aversive properties of acetaldehyde accumulated during alcohol consumption. However not all of the anti-alcohol properties of diadzin are due to inhibition of ALDH-2. This is in agreement with our earlier work showing significant interaction effects of both pyrozole (ALDH-2 inhibitor) and methyl-pyrozole (non-inhibitor) and ethanol's depressant effects. Moreover, it has been suggested that selective ALDH 2 inhibitors reduce craving for alcohol by increasing dopamine in the nucleus accumbens (NAc). In addition there is significant evidence related to the role of the genetics of bitter receptors (TAS2R) and its stimulation as an aversive mechanism against alcohol intake. The inclusion of bitters such as Gentian & Tangerine Peel in Declinol provides stimulation of gut TAS2R receptors which is potentially synergistic with the effects of Kudzu. Finally the addition of Radix Bupleuri in the Declinol formula may have some protective benefits not only in terms of ethanol induced liver toxicity but neurochemical actions involving endorphins, dopamine and epinephrine. With this information as a rationale, we report herein that this combination significantly reduced Alcohol Use Disorders Identification Test (AUDIT) scores administered to ten heavy drinkers (M=8, F=2; 43.2 ± 14.6 years) attending a recovery program. Specifically, from the pre-post comparison of the AUD scores, it was found that the score of every participant decreased after the intervention which ranged from 1 to 31. The decrease in the scores was found to be statistically significant with the p-value of 0.00298 (two-sided paired test; p-value = 0.00149 for one-sided test). Albeit this being a small pilot, we are encouraged about these significant results, and caution any interpretation until larger controlled studies are executed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835486 | PMC |
http://dx.doi.org/10.4172/2155-6105.1000153 | DOI Listing |
Environ Res
July 2023
Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India. Electronic address:
The goal of the project was to create environmentally friendly and economically viable materials for thoroughly purifying contaminated water. An affordable, phytogenic, and multifunctional plant-based nanomaterial was prepared in this context. The work demonstrates an effective green synthesis method for producing iron nanoparticles (FeNPs) using six different plant extracts as a reducing agent.
View Article and Find Full Text PDFMolecules
October 2022
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
Sci Rep
November 2021
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China.
Because of the complex etiology, the treatment of gastric cancer is a formidable challenge for contemporary medical. The current treatment method focuses on traditional surgical procedures, supplemented by other treatments. Among these other treatments, Traditional Chinese Medicine (TCM) plays an important role.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2021
School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
The treatment of textile wastewater comprising many dyes as contaminants endures an essential task for environmental remediation. In addition, combating antifungal multidrug resistance (MDR) is an intimidating task, specifically owing to the limited options of alternative drugs with multitarget drug mechanisms. Incorporating natural polymeric biomaterials for drug delivery provides desirable properties for drug molecules, effectively eradicating MDR fungal growth.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
July 2020
Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan.
The advent of antibiotics revolutionized medical care resulting in significantly reduced mortality and morbidity caused by infectious diseases. However, excessive use of antibiotics has led to the development of antibiotic resistance and indeed, the incidence of multidrug-resistant pathogens is considered as a major disadvantage in medication strategy, which has led the scholar's attention towards innovative antibiotic sources in recent years. Medicinal plants contain a variety of secondary metabolites with a wide range of therapeutic potential against the resistant microbes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!