Both obesity and diabetes mellitus are associated with alterations in lipid metabolism as well as a change in bone homeostasis and osteoclastogenesis. We hypothesized that increased fatty acid levels affect bone health by altering precursor cell differentiation and osteoclast activation. Here we show that palmitic acid (PA, 16:0) enhances receptor activator of NF-κB ligand (RANKL)-stimulated osteoclastogenesis and is sufficient to induce osteoclast differentiation even in the absence of RANKL. TNFα expression is crucial for PA-induced osteoclastogenesis, as shown by increased TNFα mRNA levels in PA-treated cells and abrogation of PA-stimulated osteoclastogenesis by TNFα neutralizing antibodies. In contrast, oleic acid (OA, 18:1) does not enhance osteoclast differentiation, leads to increased intracellular triglyceride accumulation, and inhibits PA-induced osteoclastogenesis. Adenovirus-mediated expression of diacylglycerol acyl transferase 1 (DGAT1), a gene involved in triglyceride synthesis, also inhibits PA-induced osteoclastogenesis, suggesting a protective role of DGAT1 for bone health. Accordingly, Dgat1 knockout mice have larger bone marrow-derived osteoclasts and decreased bone mass indices. In line with these findings, mice on a high-fat PA-enriched diet have a greater reduction in bone mass and structure than mice on a high-fat OA-enriched diet. Thus, we propose that TNFα mediates saturated fatty acid-induced osteoclastogenesis that can be prevented by DGAT activation or supplementation with OA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945760 | PMC |
http://dx.doi.org/10.1002/jbmr.2150 | DOI Listing |
Mol Cell Endocrinol
February 2025
Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:
Excessive consumption of saturated fatty acids creates a debilitating cellular environment that hinders the normal function and survival of osteoblasts, contributing to bone metabolic disorders such as osteoporosis. The FDA-approved polypeptide PTH 1-34 is a well-established therapy for post-menopausal osteoporosis, yet its protective effects in a palmitic acid (PA)-rich hyperlipidemic environment are not well understood. This study investigates the impact of PTH 1-34 on PA-induced cellular responses in osteoblasts.
View Article and Find Full Text PDFRedox Rep
December 2024
Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, Anhui, People's Republic of China.
Biochem Pharmacol
April 2024
Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China. Electronic address:
Diabetes-related hyperglycemia inhibits bone marrow mesenchymal stem cell (BMSC) function, thereby disrupting osteoblast capacity and bone regeneration. Dietary supplementation with phytic acid (PA), a natural inositol phosphate, has shown promise in preventing osteoporosis and diabetes-related complications. Emerging evidence has suggested that circular (circ)RNAs implicate in the regulation of bone diseases, but their specific regulatory roles in BMSC osteogenesis in hyperglycemic environments remain elucidated.
View Article and Find Full Text PDFSci Rep
November 2022
Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
The self-organizing potential of induced pluripotent stem cells (iPSCs) represents a promising tool for bone tissue engineering. Shear stress promotes the osteogenic differentiation of mesenchymal stem cells, leading us to hypothesize that specific shear stress could enhance the osteogenic differentiation of iPSCs. For osteogenesis, embryoid bodies were formed for two days and then maintained in medium supplemented with retinoic acid for three days, followed by adherent culture in osteogenic induction medium for one day.
View Article and Find Full Text PDFBiomed Pharmacother
February 2022
Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. Electronic address:
Human fibroblast growth factor 19 (FGF19) has become a potential therapeutic target for metabolic-related diseases. However, the effects of FGF19 on obesity-induced bone loss have not been completely elucidated. The aim of this study was to investigate the protective effects of FGF19 in high-fat diet (HFD)-fed obese mice and palmitic acid (PA)-treated osteoblasts and to further explore its underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!