Modified forms of the D1 protein with deletions in lumen-exposed regions, were constructed in the cyanobacterium Synechocystis 6803 using site-directed mutagenesis. Integration and stability of the mutated D1 proteins in the thylakoid membrane were studied by immunoblot and pulse-chase analyses. It was found that in Δ(N325-E333), the D1 protein with a deletion in the C-terminal tail, could insert in the thylakoids to normal amounts but its stability in the membrane was dramatically reduced. Insertion of D1 in Δ(V58-D61) or Δ(D103-G109);G110R, with deletions in the A-B loop, was severely obstructed, For Δ(P350-T354), with a deletion in the processed region of the C-terminus of D1, no phenotypic effects were observed. The effects of failed D1 insertion or accumulation on Photosystem II assembly was monitored by immunoblot analysis. The conclusions from these experiments are that the extrinsic 33 kDa protein, CP43, and the β subunit of cytochrome b559 accumulate in the thylakoid membrane independently of the D1 protein, and that accumulation of the D2 protein and CP47 requires insertion but not necessarily accumulation of the D1 protein.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00117663DOI Listing

Publication Analysis

Top Keywords

insertion accumulation
12
thylakoid membrane
12
deletions lumen-exposed
8
lumen-exposed regions
8
cyanobacterium synechocystis
8
synechocystis 6803
8
photosystem assembly
8
accumulation protein
8
protein
7
constructed deletions
4

Similar Publications

Background: K-edge subtraction (KES) imaging is a dual-energy imaging technique that enhances contrast by subtracting images taken with x-rays that are above and below the K-edge energy of a specified contrast agent. The resulting reconstruction spatially identifies where the contrast agent accumulates, even when obscured by complex and heterogeneous distributions of human tissue. This method is most successful when x-ray sources are quasimonoenergetic and tunable, conditions that have traditionally only been met at synchrotrons.

View Article and Find Full Text PDF

Background: Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement.

View Article and Find Full Text PDF

Enhanced production of recombinant calf chymosin in Kluyveromyces lactis via CRISPR-Cas9 engineering.

Bioresour Technol

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan 430062, PR China. Electronic address:

As an important industrial enzyme, chymosin has been widely used in cheese manufacturing. Fermentation with Kluyveromyces lactis has allowed recombinant chymosin production to fit the growing global demand for cheese consumption; yet improvements can be made to allow for stable and larger-scale production. In this work, various chymosin producing (CP) strains were constructed via targeted chromosomal integration of various copies of a prochymosin expression cassette (PEC) using a CRISPR-Cas9 platform optimized for K.

View Article and Find Full Text PDF

: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to the scope of improving local delivery and enhancing healing. Hydroxyapatite (HXA), often used as a bone substitute, was added to prevent post-extraction alveolus volume reduction.

View Article and Find Full Text PDF

Anderson-Fabry (or Fabry) disease is a rare lysosomal storage disorder caused by a functional deficiency of the enzyme alpha-galactosidase A. The partial or total defect of this lysosomal enzyme, which is caused by variants in the gene, leads to the accumulation of glycosphingolipids, mainly globotriaosylceramide in the lysosomes of different cell types. The clinical presentation of Fabry disease is multisystemic and can vary depending on the specific genetic variants associated with the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!