The material properties of myocardium are an important determinant of global left ventricular function. Myocardial infarction results in a series of maladaptive geometric alterations which lead to increased stress and risk of heart failure. In vivo studies have demonstrated that material injection can mitigate these changes. More importantly, the material properties of these injectates can be tuned to minimize wall thinning and ventricular dilation. The current investigation combines experimental data and finite element modeling to correlate how injectate mechanics and volume influence myocardial wall stress. Experimentally, mechanics were characterized with biaxial testing and injected hydrogel volumes were measured with magnetic resonance imaging. Injection of hyaluronic acid hydrogel increased the stiffness of the myocardium/hydrogel composite region in an anisotropic manner, significantly increasing the modulus in the longitudinal direction compared to control myocardium. Increased stiffness, in combination with increased volume from hydrogel injection, reduced the global average fiber stress by ~14% and the transmural average by ~26% in the simulations. Additionally, stiffening in an anisotropic manner enhanced the influence of hydrogel treatment in decreasing stress. Overall, this work provides insight on how injectable biomaterials can be used to attenuate wall stress and provides tools to further optimize material properties for therapeutic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032381PMC
http://dx.doi.org/10.1007/s10439-013-0937-9DOI Listing

Publication Analysis

Top Keywords

material properties
12
properties myocardium
8
hydrogel injection
8
wall stress
8
increased stiffness
8
anisotropic manner
8
hydrogel
5
stress
5
experimental computational
4
computational investigation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!