Thermal ablation of solid tumors using conductive interstitial thermal therapy (CITT) produces coagulative necrosis in the center of ablation. Local changes in homeostasis for surviving tumor and systemic changes in circulation and distant organs must be understood and monitored in order to prevent tumor re-growth and metastasis. The purpose of this study was to use a mouse carcinoma model to evaluate molecular changes in the bone marrow and surviving tumor after CITT treatment by quantification of transcripts associated with cancer progression and hyperthermia, serum cytokines, stress proteins and the marrow/tumor cross-talk regulator stromal-derived factor 1. Analysis of 27 genes and 22 proteins with quantitative PCR, ELISA, immunoblotting and multiplex antibody assays revealed that the gene and protein expression in tissue and serum was significantly different between ablated and control mice. The transcripts of four genes (Cxcl12, Sele, Fgf2, Lifr) were significantly higher in the bone marrow of treated mice. Tumors surviving ablation showed significantly lower levels of the Lifr and Sele transcripts. Similarly, the majority of transcripts measured in tumors decreased with treatment. Surviving tumors also contained lower levels of SDF-1α and HIF-1α proteins whereas HSP27 and HSP70 were higher. Of 16 serum chemokines, IFNγ and GM-CSF levels were lower with treatment. These results indicate that CITT ablation causes molecular changes which may slow cancer cell proliferation. However, inhibition of HSP27 may be necessary to control aggressiveness of surviving cancer stem cells. The changes in bone marrow are suggestive of possible increased recruitment of circulatory cancer cells. Therefore, the possibility of heightened bone metastasis after thermal ablation needs to be further investigated and inhibition strategies developed, if warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898720 | PMC |
http://dx.doi.org/10.3892/ijo.2013.2185 | DOI Listing |
Nucleosides Nucleotides Nucleic Acids
January 2025
Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.
View Article and Find Full Text PDFJ Foot Ankle Res
March 2025
Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
Background: Midfoot pain is common but poorly understood, with radiographs often indicating no anomalies. This study aimed to describe bone, joint and soft tissue changes and to explore associations between MRI-detected abnormalities and clinical symptoms (pain and disability) in a group of adults with midfoot pain, but who were radiographically negative for osteoarthritis.
Methods: Community-based participants with midfoot pain underwent an MRI scan of one foot and scored semi-quantitatively using the Foot OsteoArthritis MRI Score (FOAMRIS).
J Biomed Mater Res B Appl Biomater
January 2025
The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK.
Background/objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Hematology and Bone Marrow Transplant, National Center for Cancer Care and Research, Doha P.O. Box 3050, Qatar.
Background: Renal adverse drug reactions (ADRs) associated with tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML) are relatively rare, and there is currently no standardized protocol for their management. Therefore, this study aimed to summarize renal ADRs related to TKIs use in CML and propose an evidence-based approach to monitor and manage these ADRs.
Methods: A systematic literature review was performed to identify renal ADRs associated with TKIs in CML.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!