The carbohydrate-active enzymes database (CAZy) in 2013.

Nucleic Acids Res

Centre National de la Recherche Scientifique, CNRS UMR 7257, 13288 Marseille, France and Aix-Marseille Université, AFMB, 163 Avenue de Luminy, 13288 Marseille, France.

Published: January 2014

The Carbohydrate-Active Enzymes database (CAZy; http://www.cazy.org) provides online and continuously updated access to a sequence-based family classification linking the sequence to the specificity and 3D structure of the enzymes that assemble, modify and breakdown oligo- and polysaccharides. Functional and 3D structural information is added and curated on a regular basis based on the available literature. In addition to the use of the database by enzymologists seeking curated information on CAZymes, the dissemination of a stable nomenclature for these enzymes is probably a major contribution of CAZy. The past few years have seen the expansion of the CAZy classification scheme to new families, the development of subfamilies in several families and the power of CAZy for the analysis of genomes and metagenomes. This article outlines the changes that have occurred in CAZy during the past 5 years and presents our novel effort to display the resolution and the carbohydrate ligands in crystallographic complexes of CAZymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965031PMC
http://dx.doi.org/10.1093/nar/gkt1178DOI Listing

Publication Analysis

Top Keywords

carbohydrate-active enzymes
8
enzymes database
8
database cazy
8
cazy years
8
cazy
6
cazy 2013
4
2013 carbohydrate-active
4
cazy http//wwwcazyorg
4
http//wwwcazyorg online
4
online continuously
4

Similar Publications

A pathogen strain responsible for sweet potato stem and foliage scab disease was isolated from sweet potato stems. Through a phylogenetic analysis based on the rDNA internal transcribed spacer (ITS) region, combined with morphological methods, the isolated strain was identified as To comprehensively analyze the pathogenicity of the isolated strain from a genetic perspective, the whole-genome sequencing of HD-1 was performed using both the PacBio and Illumina platforms. The genome of HD-1 is about 26.

View Article and Find Full Text PDF

Helotiales, a diverse fungal order within Leotiomycetes (Ascomycota), comprises over 6000 species occupying varied ecological niches, from plant pathogens to saprobes and symbionts. Despite their importance, their genetic adaptations to temperature and environmental conditions are understudied. This study investigates temperature adaptations in infection genes and substrate degradation genes through a comparative genomics analysis of 129 Helotiales species, using the newly sequenced genomes of and .

View Article and Find Full Text PDF

is one of the widely produced edible fungi worldwide. It is rich in γ-aminobutyric acid (GABA), a non-protein amino acid with important physiological functions in humans. To investigate the functions of key genes in the GABA metabolic pathway of , we isolated the monokaryon from the factory-cultivated strain and then sequenced and assembled the genome using the PacBio Sequel and Illumina NovaSeq sequencing platforms.

View Article and Find Full Text PDF

, previously classified in the genus until 2007, is an attenuated pathogen known to provide cross-protection against wilt in various crops. To investigate the potential mechanisms underlying its reduced virulence, we conducted genome sequencing, annotation, and a comparative genome analysis of GnVn.1 (GnVn.

View Article and Find Full Text PDF

Transcriptome Analysis of the Growth-Promoting Effect of Large Macrofungal Sclerotium Powder on and Strains.

J Fungi (Basel)

November 2024

National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.

In the industrial production of and , slow growth of the mother seed and insufficient hyphal vitality can significantly affect the cultivation process. To shorten the growth period on traditional PDA medium, two strains of and were cultured with different proportions of . and sclerotium powders added into the medium to investigate the effect on the mycelial growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!