Epigenetic modification of the genome via cytosine methylation is a dynamic process that responds to changes in the growing environment. This modification can also be heritable. The combination of both properties means that there is the potential for the life experiences of the parental generation to modify the methylation profiles of their offspring and so potentially to "pre-condition" them to better accommodate abiotic conditions encountered by their parents. We recently identified high vapor pressure deficit (vpd)-induced DNA methylation at 2 gene loci in the stomatal development pathway and an associated reduction in leaf stomatal frequency. (1) Here, we test whether this epigenetic modification pre-conditioned parents and their offspring to the more severe water stress of periodic drought. We found that 3 generations of high vpd-grown plants were better able to withstand periodic drought stress over 2 generations. This resistance was not directly associated with de novo methylation of the target stomata genes, but was associated with the cmt3 mutant's inability to maintain asymmetric sequence context methylation. If our finding applies widely, it could have significant implications for evolutionary biology and breeding for stressful environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091208PMC
http://dx.doi.org/10.4161/psb.25974DOI Listing

Publication Analysis

Top Keywords

high vapor
8
vapor pressure
8
pressure deficit
8
epigenetic modification
8
periodic drought
8
methylation
5
pre-conditioning epigenetic
4
epigenetic response
4
response high
4
deficit increases
4

Similar Publications

Carbon-supported Fe single atom nanozymes with long-lasting ROS generation and high NIR photothermal performance for synergistic cancer therapy.

J Colloid Interface Sci

April 2025

High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.

View Article and Find Full Text PDF

Fabrication of Ag based Surface Enhanced Raman Scattering substrates with periodic mask arrays by electron beam deposition.

Anal Chim Acta

February 2025

Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.

Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.

View Article and Find Full Text PDF

Clinical features, diagnosis, management, and prognosis of circumscribed choroidal hemangioma.

Surv Ophthalmol

January 2025

Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China; Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China. Electronic address:

Because of its benign nature and rarity, circumscribed choroidal hemangioma (CCH) often receives limited attention, leading to a high rate of misdiagnosis and a lack of standardized treatment protocols. We provide a thorough clarification of the demographics, clinical features, diagnosis, management, and prognosis of CCH. We conducted a systematic search of the PubMed, EMBASE, and Ovid databases up to December, 2023, to identify relevant studies.

View Article and Find Full Text PDF

Tumor-targeted near-infrared/ultraviolet-triggered photothermal/gas therapy nanoplatform for effective cancer synergistic therapy.

Colloids Surf B Biointerfaces

January 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA.

View Article and Find Full Text PDF

Patterns and Drivers of Surface Energy Flux in the Alpine Meadow Ecosystem in the Qilian Mountains, Northwest China.

Plants (Basel)

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Alpine meadows are vital ecosystems on the Qinghai-Tibet Plateau, significantly contributing to water conservation and climate regulation. This study examines the energy flux patterns and their driving factors in the alpine meadows of the Qilian Mountains, focusing on how the meteorological variables of net radiation (), air temperature, vapor pressure deficit (), wind speed (), and soil water content () influence sensible heat flux () and latent heat flux (). Using the Bowen ratio energy balance method, we monitored energy changes during the growing and non-growing seasons from 2022 to 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!