Oxygen storage capacity and structural flexibility of LuFe2O4+x (0≤x≤0.5).

Nat Mater

Laboratoire CRISMAT, UMR 6508 CNRS, ENSICAEN, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex, France.

Published: January 2014

Combining functionalities in devices with high performances is a great challenge that rests on the discovery and optimization of materials. In this framework, layered oxides are attractive for numerous purposes, from energy conversion and storage to magnetic and electric properties. We demonstrate here the oxygen storage ability of ferroelectric LuFe2O4+x within a large x range (from 0 to 0.5) and its cycling possibility. The combination of thermogravimetric analyses, X-ray diffraction and transmission electron microscopy evidences a complex oxygen intercalation/de-intercalation process with several intermediate metastable states. This topotactic mechanism is mainly governed by nanoscale structures involving a shift of the cationic layers. The ferrite is highly promising because absorption begins at a low temperature (~=200 °C), occurs in a low oxygen pressure and the uptake of oxygen is reversible without altering the quality of the crystals. The storage/release of oxygen coupled to the transport and magnetic properties of LnFe2O4 opens the door to new tunable multifunctional applications.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmat3809DOI Listing

Publication Analysis

Top Keywords

oxygen storage
8
oxygen
6
storage capacity
4
capacity structural
4
structural flexibility
4
flexibility lufe2o4+x
4
lufe2o4+x 0≤x≤05
4
0≤x≤05 combining
4
combining functionalities
4
functionalities devices
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!