Adenosylcobalamin, a coenzyme form of vitamin B12, is an organometallic compound that participates in about ten enzymatic reactions. These enzymes catalyze chemically challenging reactions by using a highly reactive primary carbon radical that is derived from homolysis of the coenzyme Co-C bond. Among them, diol dehydratases and ethanolamine ammonia-lyase have been most extensively studied to establish the general mechanism of adenosylcobalamin-assisted enzymatic catalysis and radical-catalyzed reactions. Another important point is that adenosylcobalamin-dependent radical enzymes are prone to mechanism-based irreversible inactivation during catalysis and have their own chaperones for the maintenance of catalytic activities. This review will highlight biochemical, structural, and computational studies with special emphases on radical catalysis and reactivating chaperones of these enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2013.11.002 | DOI Listing |
Org Biomol Chem
January 2025
Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, China.
We present a visible-light-promoted radical cascade cyclization reaction sulfonylmethylation, cyano insertion, and radical cyclization of unactivated alkenes bearing cyano groups. This strategy enables the rapid synthesis of sulfonylmethylated phenanthridines under mild conditions with broad substrate compatibility, operational simplicity, and mild reaction conditions. The developed approach provides a novel pathway for assembling complex polycyclic nitrogen-containing frameworks, addressing a critical synthetic challenge and expanding the toolbox of photochemical transformations in organic synthesis.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
The photochemistry of nitrous acid (HONO) plays a crucial role in atmospheric chemistry as it serves as a key source of hydroxyl radicals (OH) in the atmosphere; however, our comprehension of the underlying mechanism for the photochemistry of HONO especially in the presence of water is far from being complete as the transient intermediates in the photoreactions have not been observed. Herein, we report the photochemistry of microsolvated HONO by water in a cryogenic N matrix. Specifically, the 1:1 hydrogen-bonded water complex of HONO was facially prepared in the matrix through stepwise photolytic O oxidation of the water complex of imidogen (NH-HO) via the intermediacy of the elusive water complex of peroxyl isomer HNOO.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
Herein, we report a cascade annulation of readily available isocyanobiaryls with simple aldehydes photoredox catalysis, providing a straightforward approach towards valuable 6-hydroxyalkylated phenanthridines. Mechanistic studies indicated the generation of a key acyl radical from aldehydes by hydrogen atom abstraction with a bromine radical. This protocol exhibits exceptional chemoselectivity, excellent tolerance of various functional groups and mild reaction conditions.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi 110-016, India.
Pyridinium salts are amine surrogates that are abundant in nature and the redox active nature of the pyridinium salts allows them to serve as precursors for generating radical species under mild conditions that can be initiated by light, heat or metal catalysis. The stereoselective formation of products has always been a topic of interest for synthetic chemists worldwide. In this context, pyridinium salts can readily undergo single electron reduction to form a neutral radical, and the N-X bond's subsequent fragmentation furnishes the X radical without any harsh reaction conditions.
View Article and Find Full Text PDFNanoscale
January 2025
Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
Single-atom catalysts with abnormally high catalytic activity have garnered extensive attention and interest for their application in tumor therapy. Despite the advancements made with current nanotherapeutic agents, developing efficient systems for cancer treatment remains challenging due to low activity, uncontrollable behavior, and nonselective interactions. Herein, we have constructed Ru single-atom-anchored MXene nanozymes (Ru-TiCT-PEG) with a mild photothermal effect and multi-enzyme catalytic activity for synergistic tumor therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!