We previously showed that activated peroxisome proliferator-activated receptor (PPAR)β/δ can protect pancreatic β cells against lipotoxic apoptosis. However, the molecular mechanism remained unclear. Glucagon-like peptide-1 receptor (GLP-1R) has been reported to exhibit a protective effect against lipotoxic apoptosis in pancreatic β cells. In the present study, we aimed to investigate the underlying molecular mechanisms that PPARβ/δ activation suppressed apoptosis and improved β cell function impaired by fatty acids, focusing on contribution of GLP-1R. Isolated rat islets and rat insulin-secreting INS-1 cells were treated with the PPARβ/δ agonist GW501516 (GW) in the presence or absence of palmitate (PA) and transfected with siRNA for PPARβ/δ or treated with the PPARβ/δ antagonist GSK0660. Apoptosis was assessed by DNA fragmentation, Hoechst 33342 staining and flow cytometry. GLP-1R expression in INS-1 cells and islets was assayed by immunoblotting, quantitative PCR (qPCR) and immunofluorescence staining. SREBP-1c, Caveolin-1, Akt, Bcl-2, Bcl-xl and caspase-3 expression was measured using immunoblotting and qPCR. Our results showed that PPARβ/δ activation decreased apoptosis in β cells and robustly stimulated GLP-1R expression under lipotoxic conditions. GW enhanced glucose-stimulated insulin secretion (GSIS) impaired by PA through stimulation of GLP-1R expression in β cells. Moreover, SREBP-1c/Caveolin-1 signaling was involved in PPARβ/δ-regulated GLP-1R expression. Finally, GW exerted anti-apoptotic effects via interfering with GLP-1R-dependent Akt/Bcl-2 and Bcl-xl/caspase-3 signaling pathways. Our study suggested that the anti-apoptotic action of GW may involve its transcriptional regulation of GLP-1R, and PPARβ/δ activation may represent a new therapeutic method for protecting pancreatic β cells from lipotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2013.11.019 | DOI Listing |
Neoplasia
January 2025
Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Kensington, New South Wales 2031, Australia; UNSW Centre for Childhood Cancer Research, Faculty of Medicine &Health, University of New South Wales, Kensington, New South Wales 2031, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2031, Australia. Electronic address:
Introduction: The impact of endoplasmic reticulum (ER) stress in tumor-associated cells, such as cancer associated fibroblasts (CAFs), immune cells and endothelial cells, on patient outcomes in clinical specimens have not been examined. For the first time, we characterized the expression and spatial locations of ER stress markers, BiP and CHOP, in tumor-associated cells and assessed their prognostic significance in a panel of pancreatic ductal adenocarcinoma (PDAC) patient samples.
Methods: Multiplex immunofluorescence was performed on tumor microarrays and images were analyzed using HALO AI software.
Lab Anim
January 2025
Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey.
Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.
One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.
Aim: To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell.
World J Gastrointest Oncol
January 2025
Department of Automatic Control Engineering, Feng Chia University, Taichung 407, Taiwan.
In this editorial, we will discuss the article by Tang published in the recent issue of the . They explored an innovative approach to enhancing gemcitabine (GEM) delivery and efficacy using human bone marrow mesenchymal stem cells (HU-BMSCs)-derived exosomes. The manufacture of GEM-loaded HU-BMSCs-derived exosomes (Exo-GEM) has been optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!