Rapid aldosterone actions on epithelial sodium channel trafficking and cell proliferation.

Steroids

Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland. Electronic address:

Published: March 2014

Aldosterone regulates blood pressure through its effects on the kidney and the cardiovascular system. Dysregulation of aldosterone signalling can result in hypertension which in turn can lead to chronic pathologies of the kidney such as renal fibrosis and nephropathy. Aldosterone acts by binding to the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues such as segments of the distal nephron including the connecting tubule and cortical collecting duct (CCD). Aldosterone also promotes the activation of protein kinase signalling cascades that are coupled to growth factor receptors and act directly on specific substrates in the cell membrane or cytoplasm. The rapid actions of aldosterone can also modulate gene expression through the phosphorylation of transcription factors. Aldosterone is a key regulator of Na(+) conservation in the distal nephron, largely through multiple mechanisms that modulate the activity of the epithelial Na(+) channel (ENaC). Aldosterone transcriptionally up-regulates the ENaCα subunit and also up regulates serum and glucocorticoid-regulated kinase-1 (SGK1) that indirectly regulates the ubiquitination of ENaC subunits. Aldosterone promotes the activation of protein kinase D1 (PKD1) which can modify the activity of ENaC and other transporters through effects on sub-cellular trafficking. In M1-CCD cells, early sub-cellular trafficking causes the redistribution of ENaC subunits within minutes of treatment with aldosterone. ENaC subunits can also interact directly with phosphatidylinositide signalling intermediates in the membrane and the mechanism by which PKD isoforms regulate protein trafficking is through the control of vesicle fission from the trans Golgi network by activation of phosphatidylinositol 4-kinaseIIIβ (PI4KIIIβ).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.steroids.2013.11.005DOI Listing

Publication Analysis

Top Keywords

enac subunits
12
aldosterone
9
distal nephron
8
aldosterone promotes
8
promotes activation
8
activation protein
8
protein kinase
8
sub-cellular trafficking
8
enac
5
rapid aldosterone
4

Similar Publications

Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which possess immunomodulatory and repair capabilities. In this study, we investigated whether MSC therapy could modulate inflammation and lung damage in the lungs of Scnn1b-transgenic mice overexpressing the β-subunit of the epithelial sodium channel (β-ENaC), a model with features of Cystic Fibrosis lung disease. Human bone marrow derived MSC cells were intravenously delivered to mice, prior to collection of bronchoalveolar lavage (BALF) and tissue.

View Article and Find Full Text PDF

Pseudohypoaldosteronism (PHA) is a rare disorder that, if not promptly recognized and treated, can lead to life-threatening hyperkalemia resulting in cardiac arrest and death. Systemic PHA is caused by variants that deactivate the epithelial sodium channel (ENaC) subunits. Management is challenging due to high-dose oral replacement therapy, and patients with systemic PHA require lifelong treatment.

View Article and Find Full Text PDF

Epithelial sodium channels (ENaCs) play a crucial role in Na reabsorption in mammals. To date, four subunits have been identified-α, β, γ, and δ-believed to form different heteromeric complexes. Currently, only the structure of the αβγ complex is known.

View Article and Find Full Text PDF

The epithelial sodium channel (ENaC) plays a key role in osmoregulation in tetrapod vertebrates and is a candidate receptor for salt taste sensation. There are four ENaC subunits (α, β, γ, δ) which form αβγ- or δβγ ENaCs. While αβγ-ENaC is a 'maintenance protein' controlling sodium and potassium homeostasis, δβγ-ENaC might represent a 'stress protein' monitoring high sodium concentrations.

View Article and Find Full Text PDF

Introduction: Milan hypertensive strain (MHS) of rat represents as one of the ideal rat models to study the genetic form of hypertension associated with aberrant renal salt reabsorption. In contrast to Milan normotensive strain (MNS), MHS rats possess missense mutations in three adducin genes and develop hypertension at 3 months old due to upregulation of sodium-chloride cotransporter (NCC). At pre-hypertensive stage (23-25 days old), MHS rats show enhanced protein abundance of Na+-K+-2Cl- cotransporter (NKCC2) but retain blood pressure comparable to MNS probably through enhanced GFR and reduced NCC and α-subunit of epithelial sodium channel (α-ENaC) expressed in distal convoluted tubule (DCT) and collecting duct (CD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!