Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Raman and cathodoluminescence spectroscopic methods were employed for clarifying important stoichiometric and mechanical properties so far missing in the specification of the physical origin of the structural behavior of Oxinium™ femoral head components. Spectroscopy proved helpful in rationalizing the actual physical and chemical reasons behind the mechanical integrity of the ceramic-film/metal-substrate interface, which is responsible for both the good adherence and the surface durability reported in prosthetic applications of Oxinium™ components. Raman spectroscopy coupled with the crack opening displacement (COD) method was used to evaluate the intrinsic fracture toughness of the surface oxide film. In addition, cathodoluminescence spectroscopy provided new evidences on both the oxygen vacancy gradient developed during the metal-oxidation manufacturing process and the bioinertness of Oxinium™ femoral components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2013.10.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!