AI Article Synopsis

Article Abstract

Three-dimensional (3D) tissue culture platforms that are capable of mimicking in vivo microenvironments to replicate physiological conditions are vital tools in a wide range of cellular and clinical studies. Here, learning from the nature of cilia in lungs - clearing mucus and pathogens from the airway - we develop a 3D culture approach via flexible and kinetic copolymer-based chains (nano-cilia) for diminishing cell-to-substrate adhesion. Multicellular spheroids or colonies were tested for 3-7 days in a microenvironment consisting of generated cells with properties of putative cancer stem cells (CSCs). The dynamic and reversible regulation of epithelial-mesenchymal transition (EMT) was examined in spheroids passaged and cultured in copolymer-coated dishes. The expression of CSC markers, including CD44, CD133, and ABCG2, and hypoxia signature, HIF-1α, was significantly upregulated compared to that without the nano-cilia. In addition, these spheroids exhibited chemotherapeutic resistance in vitro and acquired enhanced metastatic propensity, as verified from microfluidic chemotaxis assay designed to replicate in vivo-like metastasis. The biomimetic nano-cilia approach and microfluidic device may offer new opportunities to establish a rapid and cost-effective platform for the study of anti-cancer therapeutics and CSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2013.11.008DOI Listing

Publication Analysis

Top Keywords

biomimetic nano-cilia
8
modeling cancer
4
cancer metastasis
4
metastasis drug
4
drug resistance
4
resistance biomimetic
4
nano-cilia
4
nano-cilia microfluidics
4
microfluidics three-dimensional
4
three-dimensional tissue
4

Similar Publications

Facilitating tumor spheroid-based bioassays and in vitro blood vessel modeling via bioinspired self-formation microstructure devices.

Lab Chip

August 2018

Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan, Republic of China.

Non-planar microstructure-based tissue culture devices have emerged as powerful tools to mimic in vivo physiological microenvironments in a wide range of medical applications. Here we report a spontaneous aqueous molding approach - inspired by Stenocara gracilipes beetles - to rapidly fabricate non-planar microstructure devices for facilitating tissue-based bioassays. The device fabrication is determined from the self-assembled liquid morphology, which is induced by condensation or guided by surface tension.

View Article and Find Full Text PDF

The surface microstructure of cusps and leaflets in rabbit and mouse heart valves.

Beilstein J Nanotechnol

July 2014

School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu 213001, China.

In this investigation, scanning electron microscopy was used to characterize the microstructure on the surfaces of animal heart valve cusps/leaflets. The results showed that though these surfaces appear smooth to the naked eye, they are actually comprised of a double hierarchical structure consisting of a cobblestone-like microstructure and nano-cilia along with mastoids with a directional arrangement. Such nanostructures could play a very important role in the hemocompatibility characteristics of heart valves.

View Article and Find Full Text PDF

Three-dimensional (3D) tissue culture platforms that are capable of mimicking in vivo microenvironments to replicate physiological conditions are vital tools in a wide range of cellular and clinical studies. Here, learning from the nature of cilia in lungs - clearing mucus and pathogens from the airway - we develop a 3D culture approach via flexible and kinetic copolymer-based chains (nano-cilia) for diminishing cell-to-substrate adhesion. Multicellular spheroids or colonies were tested for 3-7 days in a microenvironment consisting of generated cells with properties of putative cancer stem cells (CSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!