Renal denervation is a novel catheter-based, percutaneous procedure using radiofrequency energy to ablate nerves within the renal arteries. This procedure might help to significantly lower blood pressure (BP) in patients with resistant hypertension, defined as BP > 140/90 mm Hg (> 130/80 mm Hg for those with diabetes) despite use of ≥ 3 optimally dosed antihypertensive agents, ideally including 1 diuretic agent. The Canadian Hypertension Education Program Recommendations Task Force reviewed the current evidence on safety and efficacy of this procedure. Eleven studies on renal denervation were examined and most of the evidence evaluating renal denervation was derived from the Symplicity studies. In patients with systolic BP ≥ 160 mm Hg (≥ 150 mm Hg for patients with type 2 diabetes) despite use of ≥ 3 antihypertensive agents, bilateral renal denervation was associated with significantly lower BP (-22/11 to -34/13 mm Hg) at 6 months with a low periprocedural complication rate. Few patients underwent 24-hour ambulatory BP monitoring and ambulatory BP monitoring showed more modest BP lowering (0 to -11/7 mm Hg). Although early results on short-term safety and blood pressure-lowering are encouraging, there are no long-term efficacy and safety data, or hard cardiovascular end point data. The discrepancy between office BP reductions and 24-hour ambulatory BP monitor reductions needs to be further investigated. Until more data are available, renal sympathetic denervation should be considered as a treatment option of last resort for patients with resistant hypertension who have exhausted all other available medical management options.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cjca.2013.07.008DOI Listing

Publication Analysis

Top Keywords

renal denervation
20
resistant hypertension
12
canadian hypertension
8
hypertension education
8
education program
8
patients resistant
8
diabetes despite
8
despite ≥
8
antihypertensive agents
8
24-hour ambulatory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!