Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the postgenomic era, the medical/biological fields are advancing faster than ever. However, before the power of full-genome sequencing can be fully realized, the connection between amino acid sequence and protein structure, known as the protein folding problem, needs to be elucidated. The protein folding problem remains elusive, with significant difficulties still arising when modeling amino acid sequences lacking an identifiable template. Understanding protein folding will allow for unforeseen advances in protein design; often referred to as the inverse protein folding problem. Despite challenges in protein folding, de novo protein design has recently demonstrated significant success via computational techniques. We review advances and challenges in protein structure prediction and de novo protein design, and highlight their interplay in successful biotechnological applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922204 | PMC |
http://dx.doi.org/10.1016/j.tibtech.2013.10.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!