Phase-dependent visual control of the zigzag paths of navigating wood ants.

Curr Biol

School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK; Department of Biology, California State University, Fresno, Fresno, CA 93740, USA.

Published: December 2013

Animals sometimes take sinuous paths to a goal. Insects, tracking an odor trail on the ground [1-3] or moving up an odor plume in the air [4, 5], generally follow zigzag paths. Some insects [6-8] take a zigzag approach to visual targets, perhaps to obtain parallax information. How does an animal keep its overall path in the direction of the goal without disrupting a zigzag pattern? We describe here the wood ant's strategy when guided by a familiar visual scene. If their travel direction is correct, ants face the goal briefly after each turning point along their zigzag path. If the direction is wrong, they turn rapidly at this point to place the scene correctly on their retina. Such saccade-like turns are rare elsewhere in the zigzag. Similarly, when the scene is made to jump to a new position on their retina, ants wait until an expected goal-facing phase of the zigzag before turning to correct the imposed error. Correctly timed, intermittent control allows an animal to adjust its path without compromising additional roles for the zigzag pattern in gathering visual information or in using odor cues for guidance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2013.10.014DOI Listing

Publication Analysis

Top Keywords

zigzag
8
zigzag paths
8
path direction
8
phase-dependent visual
4
visual control
4
control zigzag
4
paths navigating
4
navigating wood
4
wood ants
4
ants animals
4

Similar Publications

[n]Peri-acenes ([n]PA) have attracted great interest as promising candidates for nanoelectronics and spintronics. However, the synthesis of large [n]PA (n > 4) is extremely challenging due to their intrinsic open-shell radical character and high reactivity. Herein, we report the successful synthesis and isolation of a derivative (1) of peri-hexacene in crystalline form.

View Article and Find Full Text PDF

N-Doped Zigzag-Type Aromatic Truncated Cone Belts.

J Am Chem Soc

January 2025

Key Laboratory of Bioorganic Phosphorous and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.

Zigzag aromatic hydrocarbon belts, ultrashort segments of zigzag carbon nanotubes, have been fascinating in the chemistry community for more than a half century because of their aesthetically appealing molecular nanostructures and tantalizing applications. Precise introduction of heteroatoms of distinct electronegativity and electronic configuration can create various heterocyclic aromatic nanobelts with novel physical and chemical properties. Here, we report the synthesis of unprecedented N-doped zigzag-type aromatic belts, belt[]pyrrole[]pyridines ( = 6-8), from multiple intramolecular C-C homocoupling reactions of readily available azacalix[](3,5-dibromopyridine)s.

View Article and Find Full Text PDF

2D and 3D porous coordination networks (PCNs) as exemplified by metal-organic frameworks, MOFs, have garnered interest for their potential utility as sorbents for molecular separations and storage. The inherent modularity of PCNs has enabled the development of crystal engineering strategies for systematic fine-tuning of pore size and chemistry in families of related PCNs. The same cannot be said about one-dimensional (1D) coordination polymers, CPs, which are understudied with respect to porosity.

View Article and Find Full Text PDF

This study investigates the optical properties of carbon nanotubes (CNTs) and silicene nanotubes (SiNTs) under the influence of external magnetic fields, focusing on their linear and nonlinear optical responses. A tight-binding model is employed to analyze the effects of magnetic fields on the electronic band structure, dipole matrix elements, and various optical susceptibilities of zigzag CNTs and SiNTs. The results reveal significant magnetic field-induced modifications in both linear and nonlinear optical spectra.

View Article and Find Full Text PDF

Dryopteris×subdiffracta (Dryopteridaceae), a new natural hybrid fern from Guangxi, China.

PhytoKeys

December 2024

Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China Kunming Institute of Botany, Chinese Academy of Sciences Kunming China.

A new natural hybrid fern, Dryopteris×subdiffracta (Dryopteridaceae), is reported from Guangxi, China. Molecular phylogenetic analysis based on DNA sequences from the low-copy nuclear marker and plastid genome revealed respectively that and are parents of the new hybrid, with as the maternal parent. Cytometric analysis of the nuclear DNA content indicated that might be a diploid hybrid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!