In order to address the problem of bacterial infections in bone-substitution surgery, it is essential that bone replacement biomaterials are equipped with bactericidal components. This research aims to optimize the content of silver (Ag), a well-known antibacterial metal, in a multiwalled carbon nanotube (CNT) reinforced hydroxyapatite (HA) composite, to yield a bioceramic which can be used as an antibacterial and tough surface of bone replacement prosthesis. The bactericidal properties evaluated using Escherichia coli and Staphylococcus epidermidis indicate that CNT reinforcement supports growth of Gram negative E. coli bacteria (~8.5% more adhesion than pure HA); but showed a strong decrease of Gram positive S. epidermidis bacteria (~diminished to 66%) compared to that of pure HA. Small amounts of silver (2-5wt.%) already show a severe bactericidal effect when compared to that of HA-CNT (by 30% and ~60% respectively). MTT assay confirmed enhanced biocompatibility of L929 cells on HA-4wt.% CNT (~121%), HA-4wt.% CNT-1wt.% Ag (~124%) sample and HA-4wt.% CNT-2wt.% Ag (~100%) when compared to that of pure HA. The samples with higher silver content showed decreased biocompatibility (77% for HA-4wt.% CNT-5wt.% Ag sample and 73% for HA-4wt.% CNT-10wt.% Ag). Though reinforcement of 4wt.% CNT has shown an increase of fracture toughness by ~62%, silver reinforcement has shown enhancement of up to 244% (i.e. 3.43 times). Accordingly, isolation of toughening contribution indicates that volumetric toughening by silver dominates over interfacial strengthening contributed by CNTs towards enhanced fracture toughness of potential HA-Ag-CNT biocomposites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2013.09.034 | DOI Listing |
Nat Commun
June 2023
Department of Applied Physics, Aalto University, P.O. Box 15100, Espoo, FI 02150, Finland.
Inspired by biological systems, trainable responsive materials have received burgeoning research interests for future adaptive and intelligent material systems. However, the trainable materials to date typically cannot perform active work, and the training allows only one direction of functionality change. Here, we demonstrate thermally trainable hydrogel systems consisting of two thermoresponsive polymers, where the volumetric response of the system upon phase transitions enhances or decreases through a training process above certain threshold temperature.
View Article and Find Full Text PDFMed Eng Phys
December 2021
School of Mechanical Engineering, Lovely Professional University, Punjab, India.
Tribological study of zirconia toughened alumina against alumina is investigated using ball-on-disk tribometer with different bio-lubricants. Friction and wear coefficients are estimated for these bio-lubricants under four different loading conditions which are equivalent to regular and risky human gait activities. Experiments are carried out for a total sliding distance of 10 km with each bio-lubricant to estimate its friction and wear coefficients.
View Article and Find Full Text PDFJ Biomech Eng
March 2022
Materials Research Centre, Indian Institute of Science, Bengaluru, Karnataka 560012, India; Centre for BioSystems and Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
The wear of acetabular liner is one of the key factors determining osseointegration and long-term performance of total hip joint replacement implants. The experimental measurements of wear in total hip replacement components are time and cost-intensive. While addressing this aspect, a finite element model of a hip joint bearing consisting of zirconia-toughened alumina femoral head and ultrahigh molecular weight polyethylene liner was developed to predict the dynamic wear response of the liner.
View Article and Find Full Text PDFMaterials (Basel)
May 2021
Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland.
In order to improve the toughness and reduce polymerization shrinkage of traditional bisphenol A-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) based dental resin system, a hyperbranched thiol oligomer (HMDI-6SH) was synthesized via thiol-isocyanate click reaction using pentaerythritol tetra(3-mercaptopropionate (PETA) and dicyclohexylmethane 4,4'-diisocyanate (HMDI) as raw materials. Then HMDI-6SH was mixed with 1,3,5-Triallyl-1,3,5-Triazine-2,4,6(1H,3H,5H)-Trione (TTT) to prepare thiol-ene monomer systems, which were added into Bis-GMA/TEGDMA resins with different mass ratio from 10 wt% to 40 wt% to serve as anti-shrinking and toughening agent. The physicochemical properties of these thiol-ene-methacrylate ternary resins including functional groups conversion, volumetric shrinkage, flexural properties, water sorption, and water solubility were evaluated.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2014
MVM - Department for Mechanical Process Engineering & Mechanics, Karlsruhe Institute of Technology, Germany.
In order to address the problem of bacterial infections in bone-substitution surgery, it is essential that bone replacement biomaterials are equipped with bactericidal components. This research aims to optimize the content of silver (Ag), a well-known antibacterial metal, in a multiwalled carbon nanotube (CNT) reinforced hydroxyapatite (HA) composite, to yield a bioceramic which can be used as an antibacterial and tough surface of bone replacement prosthesis. The bactericidal properties evaluated using Escherichia coli and Staphylococcus epidermidis indicate that CNT reinforcement supports growth of Gram negative E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!