Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions.

Plant Sci

Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea.

Published: January 2014

Although posttranscriptional regulation of RNA metabolism is increasingly recognized as a key regulatory process in plant response to environmental stresses, reports demonstrating the importance of RNA metabolism control in crop improvement under adverse environmental stresses are severely limited. To investigate the potential use of RNA-binding proteins (RBPs) in developing stress-tolerant transgenic crops, we generated transgenic rice plants (Oryza sativa) that express Arabidopsis thaliana glycine-rich RBP (AtGRP) 2 or 7, which have been determined to harbor RNA chaperone activity and confer stress tolerance in Arabidopsis, and analyzed the response of the transgenic rice plants to abiotic stresses. AtGRP2- or AtGRP7-expressing transgenic rice plants displayed similar phenotypes comparable with the wild-type plants under high salt or cold stress conditions. By contrast, AtGRP2- or AtGRP7-expressing transgenic rice plants showed much higher recovery rates and grain yields compared with the wild-type plants under drought stress conditions. The higher grain yield of the transgenic rice plants was due to the increases in filled grain numbers per panicle. Collectively, the present results show the importance of posttranscriptional regulation of RNA metabolism in plant response to environmental stress and suggest that GRPs can be utilized to improve the yield potential of crops under stress conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2013.10.006DOI Listing

Publication Analysis

Top Keywords

transgenic rice
20
rice plants
20
stress conditions
16
rna metabolism
12
grain yield
8
oryza sativa
8
drought stress
8
posttranscriptional regulation
8
regulation rna
8
plant response
8

Similar Publications

OsWRKY49 on qAT5 positively regulates alkalinity tolerance at the germination stage in Oryza sativa L. ssp. japonica.

Theor Appl Genet

December 2024

Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.

Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants. With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important.

View Article and Find Full Text PDF

Enrichment of rice endosperm with anthocyanins by endosperm-specific expression of rice endogenous genes.

Plant Physiol Biochem

December 2024

Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.

A diet rich in anthocyanins can benefit human health against a broad spectrum of human diseases due to the high antioxidant activities of anthocyanins. Enrichment of anthocyanins in the starchy endosperm of rice is an effective solution to provide nutritional food in human diets. However, previous attempts failed to engineer anthocyanin biosynthesis in the rice endosperm by transgenic expression of rice endogenous genes.

View Article and Find Full Text PDF

One-step generation of prime-edited transgene-free rice.

Plant Commun

December 2024

Department of Plant Biosecurity, Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing 100193, China.

View Article and Find Full Text PDF

Global demand for food may rise by 60% mid-century. A central challenge is to meet this need using less land in a changing climate. Nearly all crop carbon is assimilated through Rubisco, which is catalytically slow, reactive with oxygen, and a major component of leaf nitrogen.

View Article and Find Full Text PDF

Highly Efficient Mediated Transformation of Oil Palm Using an -Glyphosate Selection System.

Plants (Basel)

November 2024

National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China.

Oil palm ( Jacq.) is the most efficient oil-producing crop globally, yet progress in its research has been hampered by the lack of effective genetic transformation systems. The gene, encoding 5-enolpyruvylshikimate-3-phosphate synthase, has been used as a transgenic selection marker in various crops, including rice and soybean.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!