To better understand the mechanism of low-iron stress tolerance in Malus xiaojinensis, the differences in physiological parameters and gene expression between an iron deficiency-sensitive species, Malus baccata, and an iron deficiency-tolerant species, M. xiaojinensis were investigated under low-iron (4 μM Fe) conditions. Under iron sufficient conditions, the expressions of iron uptake- and transport-related genes, i.e. FIT1, IRT1, CS1, FRD3 and NRMAP1, and the immanent leaf and root active iron contents were higher in M. xiaojinensis than those in M. baccata. However, on the first three days of low iron stress, the rhizospheric pH decreased and the root ferric chelate reductase (FCR) activity and the expression of ferrous uptake- and iron transport-related genes in the roots increased significantly only in M. xiaojinensis. Leaf chlorosis occurred on the 3rd and the 9th day after low-iron treatment in M. baccata and M. xiaojinensis, respectively. The expression of iron relocalization-related genes, such as NAS1, FRD3 and NRMAP3, increased after the 5th or 6th day of low iron stress in leaves of M. xiaojinensis, whereas the expression of NAS1, FRD3 and NRMAP3 in the leaves of M. baccata increased immediately after the onset of low iron treatment. Conclusively, the relative high active iron contents caused by the immanently active root ferrous uptake and the increased root ferrous uptake in response to low iron stress were the dominant mechanisms for the tolerance to iron deficiency in M. xiaojinensis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2013.10.002 | DOI Listing |
J Occup Health
January 2025
Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.
View Article and Find Full Text PDFInt J Sports Physiol Perform
January 2025
Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia.
Unlabelled: Iron and vitamin D are essential for physiological mechanisms underpinning physical capacities characterizing team-sport performance. Yet, the impact of iron deficiency on physical capacities beyond endurance is not clear.
Purpose: The purpose of this study was to assess variations in seasonal micronutrient concentrations and how iron deficiency impacts external-load measures in elite female rugby league players.
Water Res
January 2025
College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, Jiangsu, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China. Electronic address:
Endogenous nitrogen (N) release from lake sediments is one of main causes affecting water quality, which can be affected by the presence of iron (Fe) minerals and organic matter, especially low-molecular-weight organic acids (LMWOAs). Although these substances always coexist in sediments, their interaction effect on N fate is not yet clear. In this study, the role and mechanisms of the coexistence of iron mineral (ferrihydrite, Fh) and LMWOAs, i.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Biomedical Engineering , University of Wisconsin-Milwaukee College of Engineering and Applied Science, 3203 N Downer Ave, Milwaukee, Milwaukee, Wisconsin, 53211-3029, UNITED STATES.
Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.
View Article and Find Full Text PDFJAMA
January 2025
CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy.
Importance: Essential thrombocythemia, a clonal myeloproliferative neoplasm with excessive platelet production, is associated with an increased risk of thrombosis and bleeding. The annual incidence rate of essential thrombocythemia in the US is 1.5/100 000 persons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!