Recent advances in fluorescence localization microscopy have made it possible to image chemically fixed and living cells at 20 nm lateral resolution. We apply this methodology to simultaneously record receptor organization and dynamics on the ventral surface of live RBL-2H3 mast cells undergoing antigen-mediated signaling. Cross-linking of IgE bound to FcεRI by multivalent antigen initiates mast cell activation, which leads to inflammatory responses physiologically. We quantify receptor organization and dynamics as cells are stimulated at room temperature (22°C). Within 2 min of antigen addition, receptor diffusion coefficients decrease by an order of magnitude, and single-particle trajectories are confined. Within 5 min of antigen addition, receptors organize into clusters containing ∼100 receptors with average radii of ∼70 nm. By comparing simultaneous measurements of clustering and mobility, we determine that there are two distinct stages of receptor clustering. In the first stage, which precedes stimulated Ca(2+) mobilization, receptors slow dramatically but are not tightly clustered. In the second stage, receptors are tightly packed and confined. We find that stimulation-dependent changes in both receptor clustering and mobility can be reversed by displacing multivalent antigen with monovalent ligands, and that these changes can be modulated through enrichment or reduction in cellular cholesterol levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838755PMC
http://dx.doi.org/10.1016/j.bpj.2013.09.049DOI Listing

Publication Analysis

Top Keywords

receptor clustering
12
distinct stages
8
receptor organization
8
organization dynamics
8
multivalent antigen
8
antigen addition
8
clustering mobility
8
receptor
6
stages stimulated
4
stimulated fcεri
4

Similar Publications

Introduction: Agrin, encoded by AGRN, plays a vital role in the acetylcholine receptor clustering pathway, and any defects in this pathway are known to cause congenital myasthenic syndrome (CMS) 8 in early childhood with variable fatigable muscle weakness. The most severe or lethal form of CMS manifests as a fetal akinesia deformation sequence (FADS). To date, only one family has been reported with an association of null variants in AGRN and a lethal FADS.

View Article and Find Full Text PDF

The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.

View Article and Find Full Text PDF

[Molecular mechanism of Xinyang Tablets in improving myocardial fibrosis in uremic cardiomyopathy based on single-cell sequencing technology].

Zhongguo Zhong Yao Za Zhi

December 2024

State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510407, China Geriatrics Department, the First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510407, China Lingnan Medical Research Center, Guangzhou University of Chinese Medicine Guangzhou 510405, China Guangdong Clinical Research Institute of Chinese Medicine Guangzhou 510407, China.

This study aimed to investigate the ameliorative effect of Xinyang Tablets on myocardial fibrosis in uremic cardiomyopathy(UCM) using single-cell sequencing technology. UCM mouse models were established by 5/6 nephrectomy(NPM) and randomly divided into the model group, Xinyang Tablets group, and sham-operated(sham) group as the control. The Xinyang Tablets group received postoperative interventions of Xinyang Tablets(0.

View Article and Find Full Text PDF

Upregulation of olfactory-related neuropeptide transcripts in male Macrobrachium rosenbergii in correlation to pheromone perception from molting females.

Comp Biochem Physiol A Mol Integr Physiol

January 2025

Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand; Nakhornsawan campus, Mahidol University, Nakhonsawan, Thailand. Electronic address:

Our previous studies revealed a mating attractant or possibly a pheromone released from molting reproductive mature female prawns, Macrobrachium rosenbergii, stimulates the expression of insulin-like androgenic gland hormones in a co-culture system. The released attractant is perceived by olfactory receptors with setae located on the short lateral antennules (slAn), which connect to the olfactory neuropil in the central nervous system (CNS) of male prawns. This neural signaling propagating through the CNS is mediated by at least four neuropeptides, namely neuropeptide F (NPF), short NPF (sNPF), tachykinin (TK), and allatostatin-A (ATS-A) whose transcripts have been detected in the present study.

View Article and Find Full Text PDF

SOX11 Silence Inhibits Atherosclerosis Progression in ApoE-Deficient Mice by Alleviating Endothelial Dysfunction.

Exp Cell Res

January 2025

Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China. Electronic address:

SRY-Box Transcription Factor-11 (SOX11) is a transcriptional regulatory factor that plays a crucial role in inflammatory responses. However, its involvement in atherosclerosis (AS), a cardiovascular disease driven by endothelial cell inflammation, remains unknown. This study aims to elucidate the role of SOX11 in AS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!