Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report a practical method for biofunctionalization of fluoropolymers based on noncovalent, fluorous interactions and click chemistry that allows incorporation of biomolecules under physiological solutions. We demonstrate the method by immobilization of an antimicrobial peptide (AMP) on fluorous thin films and fluorosilicone contact lens. The fluorous surfaces were dip-coated with fluorous-tagged oligo(ethylene) chain terminated with a reactive group, such as an alkynyl group. This simple step generates a "clickable" surface. The noncovalent fluorous interaction was strong enough to allow subsequent covalent attachment of IG-25, a truncated version of the most extensively studied human AMP LL-37. The attachment was through copper-catalyzed click reaction between the alkynyl group on the surface and the azido-OEG tag at the N-terminus of IG-25. In comparison to surfaces presenting IG-25 randomly bound via carbodiimide chemistry, the surfaces presenting IG-25 tethering to the surface at the N-terminus via click chemistry displayed higher antibacterial activities against an ocular pathogen Pseudomonas aeruginosa (strain PA-O1).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925349 | PMC |
http://dx.doi.org/10.1021/am404591n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!