More and more investigations indicate that genetic modification has no significant or persistent effects on microbial community composition in the rice rhizosphere. Very few studies, however, have focused on its impact on functional microorganisms. This study completed a ¹³C-CO₂ pulse-chase labeling experiment comparing the potential effects of cry1Ab gene transformation on ¹³C tissue distribution and rhizosphere methanogenic archaeal community composition with its parental rice variety (Ck) and a distant parental rice variety (Dp). Results showed that ¹³C partitioning in aboveground biomass (mainly in stems) and roots of Dp was significantly lower than that of Ck. However, there were no significant differences in ¹³C partitioning between the Bt transgenic rice line (Bt) and Ck. RNA-stable isotope probing combined with clone library analyses inferred that the group Methanosaetaceae was the predominant methanogenic Archaea in all three rice rhizospheres. The active methanogenic archaeal community in the Bt rhizosphere was dominated by Methanosarcinaceae, Methanosaetaceae, and Methanomicrobiaceae, while there were only two main methanogenic clusters (Methanosaetaceae and Methanomicrobiaceae) in the Ck and Dp rhizospheres. These results indicate that the insertion of cry1Ab gene into the rice genome has the potential to result in the modification of methanogenic community composition in its rhizosphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1574-6941.12261 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!