To prepare polyethylene glycol (PEG)-coated, muco-inert nanoparticles, we investigated the interaction between nanoparticles and mucin, and analyzed the cellular uptake of nanoparticles in HGC-27 cells, which are a mucin-producing, gastric cancer cell line. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were manufactured through a nanoprecipitation/emulsion evaporation technique, and coumarin-6 was encapsulated as a fluorescent marker. We characterized and evaluated the nanoparticles. We examined the cellular uptake of PLGA nanoparticles in HGC-27 cells with confocal laser scanning microscopy and flow cytometry. Nanoparticles prepared using a nanoprecipitation method were 120-150 nm in size, while nanoparticles prepared using an emulsion evaporation method were 400-450 nm in size. EE% of coumarin-6 in the nanoparticles was more than 80%. The anti-adhesive ability of nanoparticles to pig-gastric mucin (PM) was notably affected by PEG coating-density, 10% PEG2000-PLGA nanoparticles and 15% PEG2000-PLGA nanoparticles possessed the strongest resistance to PM. However, the PLGA nanoparticles were strong while the chitosan-loaded nanoparticles were very weak. Our results from both confocal laser scanning microscopy as well as flow cytometry showed that mPEG-PLGA-NPs are rapidly uptaken by mucin-producing HGC-27 cells. The number of 10% mPEG-PLGA-NPs taken up by cells was 1.6- to 2.1-fold higher than PLGA-NPs incubated for the same amount of time. In conclusion, mPEG-PLGA-NPs possess hydrophilic and near-neutrally-charged surfaces that minimize mucoadhesion by reducing hydrophobic or electrostatic interactions. Both the low-PEG MW and the high density of PEG surface coverage are critical for the uptake of mPEG-PLGA-NPs in HGC-27 cells. At the same time, the size of nanoparticles was also very important.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jbn.2013.1708 | DOI Listing |
Colloids Surf B Biointerfaces
January 2025
Affiliated Huishan Hospital of medical College, Yangzhou University,Wuxi Huishan District People's Hospital, Wuxi, Jiangsu Province 214187, China. Electronic address:
Exogenous microRNA-144 (miR-144) is considered as a potential biological drug for gastric cancer because of its biological activity to inhibit the epithelial-mesenchymal transition (EMT). However, the specific molecular mechanisms have not been fully revealed. In addition, their vulnerability to degradation by RNA enzymes in the blood limits their bioavailability.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2024
Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China.
Objectives: To investigate the expression of cartilage acidic protein 1 (CRTAC1) in gastric cancer (GC) and its effect on biological behaviors and immune cell infiltration of GC.
Methods: Transcriptomic, GO and KEGG analyses were conducted to investigate the association of CRTAC1 expression with prognosis of GC patients and its involvement in cell function and signaling pathways. ESTIMATE algorithm was used to analyze the effect of CRTAC1 expression on the tumor microenvironment and the tumor mutation load.
Cell Biol Toxicol
December 2024
Department of General Surgery, First Medical Center of Chinese, PLA General Hospital, Haidian District, No.28 Fuxing Road, Beijing, 100853, China.
Accumulating evidences have indicated that cancer stem cells (CSCs) can initiate tumor progression and cause recurrence after therapy. However, specific markers of gastric CSCs (GCSCs) from different origins have not been comprehensively revealed. Here, we further detected whether cell populations labelled with CD44 and Lgr5, well-recognized stem markers for gastric cancer (GC), can better emphasize cancer initiation, therapeutic resistance and recurrence.
View Article and Find Full Text PDFDig Dis Sci
December 2024
The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, 136 Jiangyang Avenue, Building 41, Room 301, Yangzhou, 225009, Jiangsu, China.
Background And Aims: Previous studies have demonstrated that peptidylarginine deiminase 4 (PAD4) functions as a suppressor, promoter, or both in cancer pathogenesis and therapeutic outcomes. Although PAD4 expression has been proposed to be one of the molecular features of gastric cancer (GC), the biological basis of PAD4 in GC progression and chemotherapy has not been formally established.
Methods: Cell type-preferential expression of PAD4 was analyzed in both preclinical and clinical models.
RSC Adv
December 2024
Key Lab of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, CAS Dalian 116023 China +86 411 84379539 +86 411 84379519.
Spiramycin and its derivatives are commonly used antimicrobials, and its derivative, carrimycin, has recently been found to have good anticancer potential. Here, we found that the 4''-OH of spiramycin can be selectively acylated, resulting in a series of novel spiramycin derivatives with a structure similar to carrimycin. Anticancer studies showed that most of the derivatives exhibited moderate to good anti-proliferative activity against four cancer cell lines, including HGC-27, HT-29, HCT-116 and HeLa, especially compound 14, which has the strongest activity against HGC-27 cells with an IC value of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!