The effects of radio frequency sputtering of TiO2 on Li[Li0.07Nio.38Co0.15Mn0.4]O2 cathode for lithium ion batteries.

J Nanosci Nanotechnol

Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea.

Published: December 2013

A radio frequency (RF) sputtering system is used to coat nano-thick TiO2 layer on the overlithiated layered metal oxide (OLO) electrode. The X-ray diffraction (XRD) and the field emission-scanning electron microscope (FE-SEM) images indicate amorphous TiO2 is coated on the top surface of the electrode with a thickness of approximately 20 nm for the 40 min sputtered sample. The sample sputtered for 40 minutes cycled at 90 mA g(-1) between 2 and 4.8 V versus Li+/Li has 15 mA h g(-1) more specific capacity at 100th cycle than that of the uncoated sample. In the voltage profiles, additional overpotential is unobservable upon sputtering TiO2 in comparison to that of the reference sample. Further analyses by the electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) demonstrate the sputtered sample has less electrolyte decomposition products on the surface than that of the reference sample. Moreover, in the case of sputtering, reduced amount of transition metal and Li2O are deposited on the surface of the counter electrode, Li. In summary, the sputtered TiO2 acts as nano-sized artificial solid electrolyte interface (SEI) layer, which protects the surface of the electrode and improves kinetic properties, leading to improved performance.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2013.8128DOI Listing

Publication Analysis

Top Keywords

radio frequency
8
frequency sputtering
8
sputtering tio2
8
surface electrode
8
sputtered sample
8
reference sample
8
sample
6
tio2
5
effects radio
4
sputtering
4

Similar Publications

Sc-doped GeTe thin films prepared by radio-frequency magnetron sputtering.

Sci Rep

January 2025

Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.

Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.

View Article and Find Full Text PDF

Resonant Conversion of Wave Dark Matter in the Ionosphere.

Phys Rev Lett

December 2024

Departement de Physique Theorique, Universite de Geneve, 24 quai Ernest Ansermet, 1211 Geneve 4, Switzerland.

Article Synopsis
  • Researchers are investigating how resonant dark matter can convert into low-frequency radio waves in Earth's ionosphere, particularly in the mass range of about 10^{-9} to 10^{-8} eV.
  • The typical methods for calculating this conversion are inadequate due to the nonrelativistic nature of dark matter, so a new approach involving a second-order boundary-value problem is applied.
  • Using a small dipole antenna to detect these radio waves could increase sensitivity to dark photon and axionlike particle dark matter, offering a new avenue for exploring uncharted regions of dark matter physics.
View Article and Find Full Text PDF

This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10  of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.

View Article and Find Full Text PDF

Foreign body ingestion in children: Clinical features and complications.

Tunis Med

December 2024

Department of Pediatric Medicine B, Béchir Hamza Children's Hospital, Faculty of Medicine of Tunis, Tunis el Manar University, Tunis, Tunisia.

Introduction: The ingestion of foreign body (FB) is a common problem in paediatrics. Children are curious by nature and tend to explore environment by inserting objects into their mouths.

Aim: To update our epidemiological and clinical data and adapt clinical management in order to limit morbidity associated with this fairly frequent accidental pathology.

View Article and Find Full Text PDF

Introduction: Locoregional recurrence (LR) is common in locally advanced head and neck cancer (HNSCC), posing challenges for treatment. We analysed outcome parameters and toxicities for patients being treated with radiotherapy (RT) for LR-HNSCC and investigated patient and disease related prognostic factors in this prognostically unfavourable group.

Methods: This analysis includes 101 LR-HNSCC patients treated with RT, radio-chemotherapy (RCT) or radio-immunotherapy (RIT) between 2010 and 2018 at a high-volume tertiary centre.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!