A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrochemical characterization of a carbon nanofiber electrode system hybridized with PEDOT-PSS. | LitMetric

In this work, electrochemical properties of a bilayer electrode system prepared from an electrically conducting polymer, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT-PSS coated carbon nanofibers (CNFs), have been investigated. The CNFs were used as supports for the deposition of PEDOT-PSS by a dip-coating technique to yield a bilayer electrode system. Electrodes prepared by such a method were used in supercapacitors operating in acidic (1 M H2SO4) electrolytes. The capacitance values were estimated by voltammetry and galvanostatic techniques with a three-electrode cell configuration. Due to the CNF's graphitic structure and the presence of exterior walls with numerous edges, a high specific surface area and easily accessible electrode/electrolyte interface were obtained, thus yielding good capacitance in the bilayer active materials. The capacitance for PEDOT-PSS coated CNF bilayer electrodes ranged from 80 to 180 F/g and the fabricated materials showed good cycling performance with high stability in aqueous electrolytes. This was probably due to enhanced access to the CNFs, leading to the generation of a double layer and, ultimately, higher values of the capacitance.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2013.8126DOI Listing

Publication Analysis

Top Keywords

electrode system
12
bilayer electrode
8
pedot-pss coated
8
electrochemical characterization
4
characterization carbon
4
carbon nanofiber
4
nanofiber electrode
4
system hybridized
4
pedot-pss
4
hybridized pedot-pss
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!