Mycobacteria produce an unusual, glycolylated form of muramyl dipeptide (MDP) that is more potent and efficacious at inducing NOD2-mediated host responses. We tested the importance of this modified form of MDP in Mycobacterium tuberculosis by disrupting the gene, namH, responsible for this modification. In vitro, the namH mutant did not produce N-glycolylated muropeptides, but there was no alteration in colony morphology, growth kinetics, cellular morphology, or mycolic acid profile. Ex vivo, the namH mutant survived and replicated normally in murine and human macrophages, yet induced diminished production of tumor necrosis factor α. In vivo, namH disruption did not affect the bacterial burden during infection of C57BL/6 mice or cellular recruitment to the lungs but modestly prolonged survival after infection in Rag1(-/-) mice. These results indicate that the modified MDP is an important contributor to the unusual immunogenicity of mycobacteria but has a limited role in the pathogenesis of M. tuberculosis infection.

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jit622DOI Listing

Publication Analysis

Top Keywords

mycobacterium tuberculosis
8
namh mutant
8
vivo namh
8
n-glycolylated peptidoglycan
4
peptidoglycan contributes
4
contributes immunogenicity
4
immunogenicity pathogenicity
4
pathogenicity mycobacterium
4
tuberculosis mycobacteria
4
mycobacteria produce
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!